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Abstract. In underwater acoustics, wave propagation can be greatly
disrupted by random fluctuations in the ocean environment. In partic-
ular, phase measurements of the complex pressure field can be heavily
noisy and can defeat conventional direction-of-arrival (DOA) estimation
algorithms.

In this paper, we propose a new Bayesian approach to address such
phase noise through an informative prior on the measurements. This is
combined to a sparse assumption on the directions of arrival to achieve a
highly-resolved estimation and integrated into a message-propagation al-
gorithm referred to as the “paSAMP” algorithm (for Phase-Aware Swept
Approximate Message Passing). Our algorithm can be seen as an exten-
sion of the recent phase-retrieval algorithm “prSAMP” to phase-aware
priors.

Experiments on simulated data mimicking real environments demon-
strate that paSAMP outperform conventional approaches (e.g. classic
beamforming) in terms of DOA estimation. paSAMP also proves to be
more robust to additive noise than other variational methods (e.g. based
on mean-field approximation).

Keywords: DOA estimation, sparse representation, Bayesian estimation, vari-
ational Bayesian approximations, message passing algorithms

1 Introduction

Common to many applications such as SONAR, RADAR, and telecommunica-
tions, direction-of-arrival (DOA) estimation aims at locating one or more sources
emitting in some propagation media. Various methods have been proposed to
address this problem. They can be distinguished by the assumptions made on
the propagating medium and sources.

The beamforming approach [1] constitutes the most famous approach. As
it implicitly assumes the noise to be Gaussian and additive, it leads to poor
estimation performance for compelex phase perturbations.The so-called “high-
resolution” techniques consider additional assumptions over the number or the
nature of the sources. This is the case of the well-known MUSIC method [2].

* This work has been supported by the DGA MRIS.
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MUSIC assumes the number of sources to be known and the separability of the
sub-spaces where the noise and the signal live. More recently, “compressive”
beamforming approaches proposed e.g. in [3] benefit from an explicit sparse
model on the sources.

While all the previously cited approaches rely on an additive Gaussian noise
model, recent work has focused on the integration of phase-noise models better
accounting for complex propagation processes. Such approaches aim to take into
account the wave-front distortion occurring when waves travel through fluctuat-
ing media. This is of key interest for a wide range of application fields including
as underwater acoustics [4,5] or atmospheric sound propagation [6,7]. These
contributions mainly relate to recent advances in phase recovery (see e.g. [8-11])
and the use of informative priors on the missing phases. In this respect, we can
mention the Bayesian approach “paVBEM” based on a mean-field approxima-
tion [12].

Here, we further explore a variational Bayesian approach. Knowing that
higher-order approximations and associated message-passing algorithms outper-
form mean-field approximations for a wide range of inverse problems [13], we
propose a novel approach based on the “swept approximate message passing”
(SwAMP) algorithm introduced in [14]. Our algorithm is proven to be more ro-
bust to additive noise and multiplicative phase noise than previous approaches
using phase-aware priors such as the paVBEM approach [12] and those using
non-informative phase priors [9].

2 PROBLEM STATEMENT

In this section, we recall the Bayesian modeling introduced in [12], which we
shall follow throughout of this paper, and introduce the estimation problem we
propose to solve.

2.1 Observation Model

Our objective is to design an algorithm able to recover the directions of arrival of
a few waves, despite a structured phase-noisy environment, exploiting one single
temporal snapshot on a uniform linear sensor array. In underwater acoustics,
this noise is mainly due to internal waves, changing the local sound-speed (see
e.g. [4]). These internal waves and their impact on the acoustic measurements
have been studied in different works (see [4,5]), which leads to a statistical
characterization of the phase noise.

In this context, we propose the following observation model: we consider a
linear antenna composed of N regularly-spaced sensors and assume that the
received signal at sensor n can be expressed as

M
Yn = ejen Z dnmxm + wn, (1)

m=1
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where 6,, stands for the phase noise due to the propagation through the fluctu-
ating medium and w,, an additive noise. The scalar d,,,, is the n-th element of
the steering vector d,, = [/ X Asin(dm) i X ANsin(@n)|T where the ¢,,’s are
some potential angles of arrival, A is the distance between two adjacent sensors
and A is the wavelength of the propagation waves.

Within model (1), at each sensor of the antenna, we assume that the received
field is a combination of a few waves arriving from different angles ¢,,,. The DOA
estimation problem then consists in identifying the positions of the non-zero co-
efficients in x £ [x1 ... z/]7. In underwater acoustics, the phase noise considered
in (1) is well-suited to characterize phase perturbations of the wave front in a
fluctuating ocean [5], especially in the case of the so-called “partially saturated
” propagation regime defined in [4]. This regime focuses on far-field propaga-
tion at high frequency with no multipath. In this case, amplitude variations of
the measured acoustic field can be neglected regarding the high sensibility to
a structured phase-noise. Note that a similar fluctuation regime has been also
identified in atmospheric sound propagation (see [7]).

2.2 Bayesian formulation of the problem

We address the estimation of x from the measurements y £ [y1,...,yn]7 in
the presence of (unknown) additive noise w £ [wi,...,wx]” and multiplicative
phase noise @ 2 [0y,...,0y]T. To solve this problem, we consider a Bayesian
framework and define some prior assumptions on the different variables in (1).

A first assumption is set on the number of sources (i.e. the non-zero coefi-
cients in x) that we suppose to be small in front of the number of sensors. To
take into account this sparse hypothesis, we adopt a Bernoulli-Gaussian model
vme{l,...,M}

p(ajm) = PCN(xm;mmUi) + (1 - p>60(xm)7 (2)

where p is the Bernoulli parameter and equals the probability for z,, to be non-
zero', CN (z.m;my,02) stands for the circular complex Gaussian distribution
with mean m, and variance o2, and §o(x,,) for the Dirac distribution. The
Bernoulli-Gaussian model is widely used when considering Bayesian inference
methods for sparsity-constrained problems (see e.g. [15, 16]).

Previous studies of the statistical characterization of fluctuation phenomena
[4,5] provide the basis for the definition of a phase-noise prior. In underwater
acoustics, [4, 5] exhibited and characterized the existence of a spatial correlation
of the measured field all along the antenna. To account for the resulting coherence
length, we consider a Markovian model as .

p(0n|9n—1) :N(erﬁﬁan—lao—g)y Vn € {27-"7N}7 (3)
p(el) :N(91107U%)7 (4)

! We assume the Bernoulli parameter to be the same for each m € {1,..., M}.
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with 8 € R;. Variance o7 is related to the coherence length and accounts for the
strength of the fluctuations. As an example, a large oz models strong fluctuations
of the medium and results in a small coherence length, such that the phase noise
varies widely from a sensor to the neighboring ones.

We also introduce an additive noise w to account for the combination of a
large number of random parasitic phenomena. Based on the central limit theo-
rem, we consider with a classic zero-mean Gaussian distribution with variance
.

Overall, our Bayesian formulation leads to the following Minimum Mean

Square Error (MMSE) problem:

% = argmin | [}~ %I plxly)ix )

X

where p(x|y) = [, p(x,0]y)d6.

To solve efficiently this problem, we propose to exploit a variational Bayesian
inference strategy, that approximates the posterior joint distribution p(x, 8|y) by
a distribution having a suitable factorization. In [12], a mean-field approximation
p(x,0y) ~ q(0) Hn]\le q(z,) was considered. Here, we address a different type
of factorization, called the Bethe approximation, relating to the “approximate
message passing” (AMP) algorithms [13]. This approximation exploits higher-
order terms which result in better estimation performance [13].

‘We motivate and detail our approach in the next section.

3 The “paSAMP” algorithm

In this section, we motivate and present the novel algorithm proposed to solve
problem (5).

3.1 Motivation and main principles of the approach

AMP algorithms have been considered for a few years as a serious solution to
linear problems under sparsity constraints. First considered in the sole case of
i.i.d (sub-)Gaussian matrices, they have been recently extended to random but
more general matrices by the “vector approximate message passing” (VAMP)
algorithm [17] and to highly correlated matrices by the “swept approximate
message passing” (SwAMP) approach [14]. Both methods aim at alleviating the
convergence issues of AMP (notably highlighted in [18]) due to its parallel update
structure.

AMP, VAMP and SwAMP have been extended to generalized but component-
wise measurement models [19, 20, 14]. They have been then successfully applied
to the phase recovery task where 6,, ~ U|[0,27], Vn € {1,..., N}, giving raise to
the so-called “prGAMP” [21], “prVAMP” [10] and “prSAMP” [9] algorithms. In
particular, the latter was shown to outperform other state-of-the-art algorithms
among which the mean-field approximation [8].
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Algorithm 1 paSAMP Algorithm

IHPUt: Y, D7 027 P U:?m Mo, 297 Tmaz
Define:

Gout,n = i(EZ\Y,P{Znh/TLa Pz s Ezn} - /“LG)

’ A1 ((vaTZ\y,P{znlyn»MZnYEZn}) _1)
gout,n - X, Zan

n
Gin,m = EX\Y{:E’YTL‘;U‘ZW7 Ezm}
’ A
Ginm = vaTX|Y{1’m|Mwm s D }

1: while t < Tyuaz do

2 forn=1...N do

3 2n(t) = ey dnmam ()

4 B4 1) =30 dum[*om (t)

5: pr (E+1) = 2.(t) — XL (H)gout.n

6 end for

7 for m = permute[l...M] do

8: Yom(t+1) = (- 25:1 |dnm|29(lmt,n)_1

9: M, (t + 1) = am(t) + Ewm (t + 1) Zgzl dnmgout,n

10: Um(t+1) = Do, E+ 1) Ginm

11: am(t+ 1) = gin,m

12: forn=1...N do

13: U+ 1) = 20 (4 1) + |dom[* (vm (E + 1) — vm(2))
14: P4 1) = p (E+ 1) + dyn (@ (E+ 1) — am(t))

_gout,n(t)(E;V:LJrl(t + 1) - Z;:Lz (t + 1))

15: end for
16: update o2 according to [12]
17: update [0y, , Xo, ] according to (14-15)

18: end for
19: end while
20: Output: {Zm = am(Tmaz)}m

The prSAMP algorithm constitutes thus a promising approach for our DOA
estimation? problem (5). However, here, the phases 6,,’s are spatially-correlated
(as represented in the Markov model). This prevents us from a direct application
of prSAMP.

We thus propose an iterative algorithm based on the two following mathe-
matical derivations:

i) the extension of prSAMP to a i.i.d. Gaussian prior on the phases,
ii) the use of a mean-field approximation to estimate the (Gaussian) posterior
distribution on the phases.

We detail both aspects in the next two sub-sections. In the following, we refer
to the proposed procedure as “paSAMP” for “phase-aware SwWAMP algorithm”.
The pseudo-code of paSAMP is presented in Algorithm 1.

2 Note in addition that the DOA estimation problem involves a highly-correlated ma-
trix. This further motivates a SwAMP-like approach.
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3.2 Extension of prSAMP to i.i.d. Gaussian phases

AMP algorithms are based on the propagation of two types of messages: the
“outgoing” messages and the “ingoing” messages from and to variables’ nodes
{m}m=11..0}. These messages are derived here for the prior distributions at-
tached to the considered problem, namely (2) and (3)-(4)3. We first focus on the
“outgoing messages” .
Considering z, £ 2%21 dpm@Tm, Yn € {1,..., N}, we assume that the z,’s
follow Gaussian distributions with means j,, and variances X', as linear com-
binations of x,,’s following Bernoulli-Gaussian distributions. By integrating over
0,, and resorting? to an identification with a Von Mises distribution [22], we can

write the moments of the posterior distribution as

Zz 1 —iuZ 0'2
EZ\Y{anynvﬂzn722n} = ——Ro ()yne THon 4 O_i,uznv (6)

o2+ X, X3 24+,
|2, Yne THon + pu, a?|? 1 Y, o2
var Zn|Yny fhz, s X = —2 = Ro( .
21y Lnlyms e 2} EEME Nx:) "ty
- EZ\Y{Zn‘ynvﬂzny Ezn}27 (7)
with _arg(Ynhan) 4 Moo 9
1t 1,1 1, = o o gm0

DR o ~ Toallue, |

o, (resp. Xy ) is the marginalized posterior mean (resp. variance) of the phase
noise 6,, as discussed in the next section, and Ro(:) = 28 where I,,() is the
modified Bessel function of the first kind at order n. We refer the reader to our
technical report [23] which details the derivations of the computations.

Regarding the “ingoing” messages, which carry the prior information on the
{®m}m=11...:}, the Bernoulli-Gaussian case has already been considered within
the AMP context, in particular in [15]. Similarly to the “outgoing” messages, the
moments of the “ingoing” messages resort to intermediary parameters pu,  and
X y,, resp. homogeneous to the mean and variance of a Gaussian distribution:

Vorp2 _lma—pey |
Expy (@mlttays Zop) = Lo e 2075500 (8)

Z/n/OT
N2 ma by,
vaerY(xm‘;“zmu Yew) = Te 20 ) |"/2 + V2| - EXIY(xml;“zmu Emm)2
nor
)
with
_Ima—ta,|? lpagy, 12
Znor = pV2mv2e 2@ H%em) 4+ (1 — ple Zem | (10)
2 x 2y
_ g :U“Im + "Emmm, V2 — g T . (11)
Y, +0? Yy + 02

3 We refer the reader to papers [9, 14] for a more general presentation of the approach.
4 We justify and develop this point in the technical report [23].
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We implement those calculations to paSAMP as new definitions of the two func-
tions g;, and g}, defined in the pseudo-code Algorithm 1. We remind the reader
that, as an extended implementation of the SwWAMP algorithm, the paSAMP al-
gorithm will conserve the structure described in [14] and [9]. For sake of clarity,
we use the notations introduced in [21] except for the scalar dm,.

3.3 Mean-field approximation for the phase noise

The above expressions call on the knowledge of the moments of the posterior
distribution on 8. To simplify the latter computation, we propose in this step to
resort to a mean-field approximation. Following a similar reasoning as in [12],
we get

Q(e) :N(93N0720)7 (12)

where Zyt=41+ diag(zlnl), (13)
g
(2
po = 2o | diag| —[n| ) arg(n) ) , (14)

with 7, =y, 2%21 Ay Ex y {@m|pia,, s 2, }, the nth element in 7 (|n| stands
here for the element-wise absolute value of i and .* for the complex conjugate),
and A;l is the precision matrix attached to the prior distribution (4) on 6, i.e.

2
Z+5L -5 0 o0

0’1 0'9 0'9
7% 1+2ﬁ2 0
At = 7% . (15)
0 g

Note that since the distribution ¢(@) is Gaussian, marginals ¢(6,) used in
the previous “prSAMP-step” of the algorithm come as

q(0n) = N(0n; po,,, Xo,.) (16)

where pg, (resp. Xy, ) is the nth element in p, (resp. in the diagonal of Xy ).

Finally, following [12], we insert an estimation of the variance o2 of the ad-
ditive noise as a maximization step of an Expectation-Maximization (EM) algo-
rithm. Due to space limitation, we omit here the derivation of the computation,
but we refer again the reader to our technical report [23].

4 Numerical Experiments

In this section, we perform a quantitative and qualitative evaluation of the pro-
posed approach with respect to state-of-the-art algorithms.
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Fig. 1. Evolution of the (averaged) normalized correlation as a function of the vari-
ance o2 for K = 2 (left) and K = 5 (right), Comparison of the performance of
conventionnal (delay-and-sum) beamforming (triangle mark), “prSAMP” (diamond
mark), “paVBEM” (circle mark) and “paSAMP” (square mark). Experiments show
that “paSAMP” provides better results and successfully integrates the phase noisy
observation model.

We consider the problem of the identification of the directions of arrival of
K plane waves from an antenna composed of N = 256 sensors. We assume
that the angles of the K incident waves can be written as ¢ = § + iz with
ir € [1,50]. A set of M = 50 steering vectors is defined from a set of angles
{¢i = —m + 15 }ieqr,... 50y and the choice of the parameter A/\ = 4. For each
of the K incident waves, the coefficient z;, is initialized with m, = 0.5 + j0.5,
p = K/M and o2 = 0.1. Finally, we set the following parameters for the phase
Markov model (3): 02 = 10, 62 = 0.1 and 8 = 0.8. This corresponds to a
situation where we have a high uncertainty on the initial value but a physical
link between two space-consecutive angle measurements is taken into account.

We compare the performance of the following 4 different algorithms: ) the
standard beamforming introduced in [1] (dashed black curve, triangle mark);
i1) the prSAMP algorithm proposed in [9] as a solution to the phase retrieval
problem (continuous black curve, diamond mark); i) the paVBEM procedure
proposed in [12] exploiting the same prior models (dashed red curve, circle mark);
iv) the paSAMP algorithm described in Section 3 (continuous blue curve, square
mark). To evaluate the performance of these procedures, we consider the nor-
magized correlation between the ground truth x and its reconstruction X, that is

X
IIXHH%‘H ’
over 100 realizations for each point of simulation.

The results achieved by the 4 procedures are presented in Figure 1, resp. for
K = 2 (left) and K = 5 (right) sources. In both cases, we see that the conven-
tional beamforming and the prSAMP algorithm fail to reconstruct x properly.
These resuts illustrate the benefits of carefully accounting for the phase noise in
fluctuating environments. We can also notice the superiority of paSAMP over
its mean-field counterpart paVBEM, especially in presence of a strong additive

as a function of the additive noise variance 2. This quantity is averaged
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noise. This comes in the continuity of previous work [9], where prSAMP proved
to outperform prVBEM. Finally, it is interesting to compare the performance of
both paSAMP and paVBEM algorithms with regard to the number of sources.
Both achieve better performance when confronting to K = 5 sources than to
K = 2 sources. As mentioned in [12], this behavior is typical for the phase re-
trieval problems, where the loss information on the phases can be compensated
by a larger number of sources. In addition, we observe that the performance gap
between paSAMP and paVBEM tends to increase with the number of sources.
This is in accordance with previous work [13] demonstrating the relevance of
the Bethe approximation over the mean-field approximation when the signal to
recover exhibits a low sparsity (i.e. a high number of non-zero coefficients).

5 CONCLUSION

We have presented here a novel AMP algorithm able to perform DOA estimation
in a corrupted phase-noisy environment. This approach exploits both a sparsity
prior on the sources and a structured prior on the phase noise. Compared to
state-of-the-art algorithms, the approach presents a good behaviour illustrating
a successful inclusion of the different assumptions. In particular, it outperforms
a recent algorithm dealing with the same DOA estimation problem in fluctuating
environments. Future work will include further assessment on real data.
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