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Abstract

In underwater acoustics, shallow water environments act as modal dispersive waveg-

uides when considering low-frequency sources, and propagation can be described by

modal theory. In this context, propagated signals are composed of few modal com-

ponents, each of them propagating according to its own wavenumber. Wavenumber-

frequency (f − k) representations are classical methods allowing modal separation.

However they require large horizontal line sensor arrays aligned with the source. In

this paper, to reduce the number of sensors, a sparse model is proposed and combined

with prior knowledge on the wavenumber physics. The method resorts to a state-of-the-

art Bayesian algorithm exploiting a Bernoulli-Gaussian model. The latter, well-suited

to the sparse representations, makes possible a natural integration of prior information

through a wise choice of the Bernoulli parameters. The performance of the method is

quantified on simulated data and finally assessed through a successful application on

real data.
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Figure 1: Illustration of a f − k plane obtained within configuration setup exposed in
section 4.1 using 240 sensors.

1 Introduction

When considering shallow-water zones and low frequency sound propagation, the sound

field is described by a sum of few dispersive modes. In this context, matched mode

processing [1] constitutes a relevant approach to infer the properties of the environ-

ment [2]. To be effective, this processing requires estimating the modes from the data

with a great accuracy.

This modal estimation step has been studied considering various configurations.

The most classical one is modal filtering using vertical line arrays (VLA) [3, 4] but

other receiver setups have also been addressed as horizontal line arrays (HLA) or single

hydrophones. In the case of single hydrophones, we can distinguish two different situa-

tions. If the source is motionless, then the modes can be separated using time-frequency

processing when the range is large enough [5], and non-linear signal processing when
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the range gets smaller [6, 7]. If the source is moving, then synthetic horizontal aperture

may be formed to resolve mode interferences [8, 9] or modal wavenumbers [10, 11].

True horizontal aperture is directly provided by HLAs. Essentially, if the acoustic field

can be sampled in the range (i.e. horizontal) dimension, then the mode estimation pro-

cedure is equivalent to a spectral estimation problem. As a result, considering a long

HLA and a monochromatic source at the endfire position, the wavenumber spectrum

can be obtained by applying a Fourier transform in the array dimension [12, 13]. In this

paper, we propose a new method for wavenumber spectrum estimation in the context

of short HLAs and broadband sources. Our work is particularized to shallow water en-

vironments and low frequencies. In addition, we assume the environment to be range

independent, and /or varying slowly so that mode coupling can be neglected.

In the following, spatial Fourier transform will be denoted SFT. It transforms sig-

nals from the spatial to the wavenumber domain. The notation TFT will be reserved for

the (more classical) temporal Fourier transform, which transforms signals from the time

domain to the frequency domain. The representation associated to the wavenumber do-

main will always be refered to as the wavenumber spectrum, while the representation

associated to the frequency domain will always be referred to as the spectrum.

Wavenumber spectrum estimation using SFT does not present any theoretical dif-

ficulty. However, it suffers from the classical drawbacks of the TFT. A large aperture

is required to obtain a decent resolution and the hydrophone spacing must be small
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enough to prevent aliasing. Because of these two restrictions, extremely large HLAs

are required to resolve the modes in underwater acoustics using SFT. However, this

issue may be circumvented by resorting to more advanced spectral estimation meth-

ods. Among them, High Resolution (HR) methods are known to be more accurate

than the SFT. When using the same number of measurements, HR methods allow a

better separation of nearby spectral components [14]. Applications of HR methods in

underwater acoustics for modal separation have been proposed using auto-regressive

models [15, 16, 17, 18] and subspace separation methods [19, 20].

Since the propagation in shallow-water environments is described by a small num-

ber of modes, the consideration of sparse models constitutes a promising alternative

to HR methods. Developments in signal processing have raised the interest of com-

pressed sensing (CS) methods for an accurate sampling and reconstruction of sparse

signals [21]. CS methods have met many applications in underwater acoustics [22, 23],

and for imaging the modal dispersion of surface waves [24]. A first application of CS

to estimate modal spectrum in underwater acoustics has been proposed in [25].

When considering a broadband source, wavenumber spectra can be estimated at

each of the source frequencies. The concatenation of them results in a frequency-

wavenumber (f − k) diagram (see Fig. 1), representative of the waveguide dispersion

[12, 13, 25]. As a consequence, f−k diagram constructions suffer from the drawbacks

inherited from each wavenumber spectrum estimation. To partially solve this problem,
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Le Courtois and Bonnel have proposed in [26] a post-processing method to track the

wavenumbers in badly resolved f − k diagrams. Tracking is performed using parti-

cle filtering (PF) [27]. To do so, the wavenumber spectrum (at a given frequency) is

modeled as a dynamic system parametrized by two equations: a system equation and

an observation equation. The observation equation is the equation that allows gener-

ating a wavenumber spectrum if the (discrete) wavenumbers are known. On the other

hand, the system equation is an iterative relation linking the wavenumbers from one

frequency to another. This system equation thus benefits from a physical hypothesis on

the wavenumber dispersion in the frequency dimension, and such an idea will also be

used in our paper. Note that the PF method is particularly interesting when the number

of sensors is too small to separate the modes. However, the number of propagating

modes must be known a priori to initiate the tracking operation. In addition, the reso-

lution of the method depends on the distribution of the particles and cannot be easily

estimated. These last two constraints will be eased in the present paper.

This paper introduces a framework relying on the hypothesis that the propagation is

sparse (in the wavenumber dimension) and dispersive (in the frequency dimension). A

methodology allowing f − k estimation and integrating these two physical hypotheses

is presented. To this end, the work focuses on the sparse estimation of the wavenumber

spectrum using a Bernoulli-Gaussian model [28]. In this framework, each wavenum-

ber spectrum is a sparse vector. Each wavenumber bin is supposed to be “on” (i.e.,

6



there is a mode propagating at this particular wavenumber value) or “off” (i.e., there

is no mode propagating at this particular wavenumber value) according to a Bernouilli

distribution. Once a wavenumber bin is “on”, the corresponding mode amplitude is

supposed to follow a Gaussian distribution. In this approach, the Bernoulli parameter

offers a great opportunity to take into account the dispersive propagation, so that the

sparse wavenumber spectra estimated at each frequency are naturally related with each

other. In this paper, the Soft Bayesian Pursuit algorithm [29] (SoBaP) is considered to

efficiently perform the estimation procedure.

The paper is organized as follows. The second section recalls the physical princi-

ples of the modal propagation and the prior knowledge exploited to build up the f − k

representation. The third section is dedicated to a mathematical formulation of the

problem and the integration of the physical prior. Finally, in section 4, the method is

applied to synthetic simulations and to marine data recorded in the North Sea.

2 Acoustic propagation in dispersive shallow water en-
vironments

2.1 Received signal

In shallow-water environments, the acoustic propagation is described by the modal

theory. The propagation depends on the frequency f and is qualified as dispersive.

When considering an emitting source s(f) at depth zs, the received signal on a sensor
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located at the distance r and depth z can be written as [30]

y(f, r) = Q
s(f)√
r

M(f)∑
m=1

ψm(f, zs) ψm(f, z)
e−jrkrm(f)√
krm(f)

+ w(f, r), (1)

where Q is a constant factor, M(f) is the number of propagating modes at frequency

f , krm(f) is the horizontal wavenumber of the mth mode and ψm(f, z) is the modal

depth function of the mth mode. The quantity w(f, r) stands for the TFT of the noise

attached to the measurements. Note that, for the sake of clarity, we deliberately omit

here the dependence in z in the notation of y(f, r) and w(f, r) as we will consider

HLAs, i.e., sensors at a constant depth.

For subsequent convenience, we define the amplitude of the mth mode as

Am(f) ,
ψm(f, zs) ψm(f, z)√

krm(f)
, (2)

so that Eq. (1) can finally be re-expressed as

y(f, r) = Q
s(f)√
r

M(f)∑
m=1

Am(f) e−jrkrm(f) + w(f, r). (3)

Considering a HLA of regularly spaced sensors aligned with the source (endfire

position), the `th sensor is at a distance of r = (`− 1)∆r + r0 from the source, where

r0 is the distance of the first sensor and ∆r the sensor spacing. In this paper, we assume

a distant source (so that r0 � ∆r). Under this assumption, the geometrical attenuation

factor 1/
√
r can be considered as constant over the entire sensor array. Similarly, we

will neglect any eventual modal attenuation, so that the modal wavenumber krm(f)

may be considered as real numbers.
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As stated in the introduction, considering a monochromatic source, the wavenum-

ber spectrum can be estimated by performing a simple SFT along the HLA. If a broad-

band source is available, a f−k diagram can be obtained by concatenating the wavenum-

ber spectra at several frequencies [12]. However, this requires a long and dense HLA.

The goal of this paper is to estimate f − k diagram in less constrained contexts, in

particular when the number of sensors is low.

2.2 Dispersion relation

In waveguides, the horizontal wavenumbers krm are linked to their vertical counter-

parts kzm by the dispersion relation, that is, for a given frequency f ,

(
2πf

c

)2

= krm(f)2 + kzm(f)2, (4)

where c is the speed of the sound1.

Discretizing the frequency axis (with f = ν∆f , ν ∈ N) and denoting krm[ν] =

krm(ν∆f ), the wavenumbers attached to two successive indices are then defined as

[25]

krm[ν + 1]2 = krm[ν]2 + (2ν + 1)

(
2π∆f

c

)2

+ ε[ν], (5)

where ∆f is the sampling period, i.e., the step between two frequency bins, and ε[ν] =

kzm[ν]2−kzm[ν+1]2. In shallow-water environments, the vertical wavenumbers kzm
1Note that the quantities c and kzm(f) are depth-dependent. Here again, we choose to skip this depen-

dence in the expression as it will be considered as constant in our sensing context. As we will see in the
following, the way the dispersion relation will be exploited in the proposed approach allows some deviations
from this assumption.
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weakly depend on the frequency [30]; the quantity ε is smaller than the other terms

of the equation and can be neglected. This approximation may not be true when the

propagation becomes strongly range dependent. This case will not be considered in the

remainder of the paper.

Equation (5) expresses the dispersive nature of the wavenumbers in a shallow-water

environment. In this paper, we propose to take into account this physical information

in the reconstruction procedure of the f − k diagram. Note that Eq. (5) was used in

[26, 25] to post-process badly resolved f − k diagrams. In this paper, Eq. (5) will

be embedded as a prior information into a Bayesian CS algorithm, allowing a direct

estimation of the f − k diagram.

3 Compressed sensing

When dealing with compressed sensing, two properties have to be verified:

• sparsity: the signal to be acquired can be represented with a few non-zero ele-

ments in a given representation basis,

• incoherence: the sensing must be made in a domain “as orthogonal as possible”

to the representation basis.

Under these conditions, the theory of compressed sensing guarantees that we can re-

cover the signal from a number of samples of the order of the number of its non-zero

elements in the representation basis.
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In words, “incoherence” expresses the fact that a signal admitting a sparse represen-

tation in a particular domain (for example, in the frequency domain) must be acquired

in the domain where its representation is spread out (for example, the time domain). In

the time-frequency example, the sensing domain is the canonical basis (time) and the

sparsity domain is the Fourier basis (frequency).

The reconstruction problem of the f − k diagram is then a perfect application case

for compressed sensing: the signal of interest is sparse in the wavenumber domain

(only few wavenumbers propagate in shallow water environments and at low frequen-

cies), and is acquired in the spatial domain. From a mathematical point of view, this

means that we acquire the signal in the canonical basis (space, through the sensor array)

and the sparsity domain is the spatial Fourier basis (wavenumber). We refer the reader

to [31] for a brief introduction to compressed sensing, or to [32] for more insights.

3.1 State of the art

Formally, let yν ∈ CL be the signal measured over the L sensors at the frequency index

ν. Adopting a discretized matrix formulation, Eq. (3) can be re-expressed as

yν = Dzν + wν , (6)

where D is a (L × N)-dictionary of Fourier discrete atoms, namely whose (`, n)-

element is dnl , e−j2π
nl
N , and zν = [zν,1, . . . , zν,N ]T ∈ CN is the wavenumber

spectrum at the frequency index, i.e., the νth transposed line of the f − k diagram to
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estimate.

Then,N corresponds to the number of discretized points in the horizontal wavenum-

ber domain, say

κrn , 2π
n

N∆r
, ∀n ∈ {1, . . . , N}, (7)

and zν gathers the amplitudes attached to each of the wavenumber bins.

According to the modal theory in shallow water environments and at low frequen-

cies, we have M [ν] � N (see Eq. (3)), where M [ν] = M(ν∆f ). In other words,

the vector zν has few non-zero elements, corresponding to the propagating modal

wavenumbers. Formally, we define byMν ⊂ {1, . . . , N} the set of cardinality M [ν]

gathering the indices of the propagating wavenumbers. For each of the M [ν] propagat-

ing modes, there exists n ∈Mν such as,

krm[ν] = κrn and Am[ν] = zν,n, (8)

where Am[ν] = Am(ν∆f ) defined as in Eq. (2).

We note here that the precise estimation of the setMν is crucial. From it derives the

knowledge of the propagating wavenumbers krm[ν] and the modal amplitudes Am[ν],

of particular interest for source depth estimation and/or environmental inversion.

The sparsity of the vector zν constitutes important information on the f − k dia-

gram, that should be taken into account in the reconstruction procedure. Several for-

mulations of the corresponding sparse recovery problem can then be considered. In
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this paper, we focus on the following one:

ẑν = argmin
zν

‖yν −Dzν‖22 + λ‖zν‖0, (9)

where ‖zν‖0 stands for the `0 pseudo-norm of zν (counting the number of non-zero

elements in zν) and λ is a parameter specifying the trade-off between the sparsity

constraint and the data-fidelity term ‖yν − Dzν‖22. The solution of Eq. (9) can be

naturally interpreted as the least-square (LS) solution (which, in our case, is equivalent

to a SFT when yν is uniformly sampled) penalized by the sparsity of the solution.

Solving Eq. (9) is an NP-hard problem [33], i.e., it generally requires a combinato-

rial search over the entire solution space. Therefore, heuristic (but tractable) algorithms

have been devised to deal with this problem. We can roughly divide them into three

families: i) the greedy algorithms (e.g., [34, 35]) which build up the sparse solution

by making a succession of greedy decisions, ii) the relaxation-based algorithms (e.g.,

[36, 37]) which replace the `0 pseudo-norm by some `p-norm (with p ∈]0, 1]) leading

to a relaxed problem efficiently solvable by standard optimization procedures, iii) the

Bayesian algorithms (e.g., [38, 29, 39]) which express the problem as the solution of a

Bayesian inference problem and apply statistical tools to solve it.

The Bayesian approaches are particularly suitable when the noise level is not known.

In addition, they offer a simple framework to implement any prior information avail-

able on the physical context of the problem. In our case, they present in particular a
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great opportunity to take into account the dispersion relation given in Eq. (5).

3.2 Bayesian formulation

Let us first assume wν in Eq. (6) to be a circular Gaussian noise (denoted by CN ) with

zero mean and variance σ2
w. We suppose then that zν is the realization of a Bernoulli-

Gaussian (BG) model [29], that is

zν = sν � xν , (10)

where � represents here the term-by-term product, and

p(sν) =

N∏
n=1

p(sν,n) with p(sν,n) = Ber(pν,n), (11)

p(xν) =

N∏
n=1

p(xν,n) with p(xν,n) = CN (0, σ2
x). (12)

The Bernoulli distribution (denoted by Ber in the equation above) has a realization

domain on {0, 1} and depends on a parameter pν,n which represents the probability of

being equal to 1. The circular Gaussian distribution put on the variable xν is assumed

to be with zero mean and variance σ2
x.

With words, sν is called the support of the sparse representation. It is such as

sν ∈ {0, 1}N . Every 1−value in sν indicates a wavenumber bin corresponding to

a propagating modal wavenumber; every 0−value in sν indicates a wavenumber bin

corresponding to a wavenumber that does not propagate. The quantity xν stands for the

amplitude of the sparse representation. Coming back to Eq. (8), sν serves then to define
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the setMν of the wavenumber bins corresponding to the propagating wavenumbers

Mν =
{
n ∈ {1, . . . , N}|sν,n = 1

}
,

while xν can be directly linked to the amplitudes Am[ν] of the propagating modes. As

a consequence, the latter are assumed to be independently and identically distributed

according to a Gaussian law, as expressed in Eq. (12).

Formally, the BG model (11)-(12) is well-suited to modelling situations where yν

stems from a sparse process: if pν,n � 1, ∀n, only a small number of sν,n’s will

typically be non-zero, i.e., the observations yν will be generated with high probability

from a small subset of the columns of D. More rigorously, it has been proved (see [28,

40]) that, within model (11)-(12), the joint Maximum A Posteriori estimation problem

shares the same set of solutions as the standard sparse recovery problem (9). This

connection gives weight to the general use of this model in sparse recovery problems.

In this paper, we choose to resort to a particular algorithm of the sparsity literature,

that is the Soft Bayesian Pursuit algorithm (SoBaP) [29]. Exploiting model (6)-(12),

SoBaP aims at solving the following marginalized MAP problem

ŝν = argmax
sν

p(sν |yν), (13)

where

p(sν |yν) =

∫
xν

p(sν ,xν |yν)dxν . (14)
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The algorithm relies on a variational approximation [41] which constitutes the building

block of the current state-of-the-art algorithms [42].

Once sν is estimated, the amplitudes of the propagated wavenumbers can be com-

puted by a simple pseudo-inversion of the dictionary D, restricted to its non-zero

columns, say Dŝν

x̂ν = D+
ŝν
yν (15)

where + stands for the pseudo-inverse operator.

3.3 Incorporating a priori information about dispersive propaga-
tion

In our application context, the BG model presents an additional advantage: relying

on the dedicated support variable sν , it allows for an easy implementation of a priori

information through the Bernoulli parameters pν,n (see Eq. (11)).

By the physical relation (5), the wavenumbers estimated at the frequency ν define

an a priori on the wavenumbers at the next frequency ν + 1. Consequently, the sparse

representation support can be propagated to the ν + 1. This can be done by means of

the Bernoulli parameters pν+1,n which set the probabilities for the elements in sν+1

to be set to 1 (i.e., for the wavenumbers to be chosen). Formally, we fix, for all n ∈

{1, . . . , N},

pν+1,n =


0.7 if n ∈ Iν ,
0.3 if (n− 1) ∈ Iν ,
0.3 if (n+ 1) ∈ Iν ,
M [ν + 1]/N otherwise

(16)
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with

Iν=

n
∣∣∣∣∣ n =

√n′2 + (2ν + 1)

(
N∆r∆f

c

)2
, ŝν,n′ = 1

, (17)

where [.] is the nearest natural number. We explain these equations hereafter.

The expression (17) is directly derived from Eq. (5), where we have replaced the

wavenumbers krm[ν + 1] and krm[ν] by their discretized expressions (7), introducing

indices n and n′ (see Eq. (8)). To make it clear, let us assume that at frequency ν, a

mode propagates at the wavenumber bin n′, i.e., ŝν,n′ = 1. Then, Eq. (5) allows to

predict the wavenumber value at frequency ν + 1. The corresponding wavenumber bin

is the index n given by Eq. (17). As a result, a weight of 0.7 is given to the bin n

predicted at frequency ν+ 1 (i.e., such that n ∈ Iν). Figure 2 illustrates the procedure.

The round operator [.] in Eq. (17) throws off the unknown quantity ε[ν] in Eq. (5)

which contains the (weak) frequency dependence of the vertical wavenumbers. It is

however taken into account in a probabilistic way through the Bernoulli parameters of

the nearest neighbors of the indices selected by Iν . Then, if a wavenumber is found

to propagate at frequency ν and bin n′ (i.e., ŝν,n′ = 1), a weight of 0.3 is given to the

position n+ 1 and n− 1 at frequency ν + 1 where n ∈ Iν .

Note finally that the numerical values of 0.7 and 0.3 are arbitrarily chosen. The

other positions, which have been not predicted by the dispersion relation are assumed

to have the same probability to be chosen, equal to M [ν + 1]/N .
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ν

ν + 1

ŝν,n′ = 1

pν+1,n−1 = 0.3 pν+1,n+1 = 0.3

pν+1,n = 0.7

n ∈ Iν

Figure 2: Illustration of the definition of the Bernoulli parameters as expressed in (16)-
(17), on two successive rows of the f − k diagram.

Interestingly, we note that, by virtue of the flexibility of the Bayesian framework,

the value of M [ν + 1] in Eq. (16) does not have to be precisely known, a rough guess

(e.g., within an error of 2 modes) being sufficient to guarantee robust results; here,

the knowledge of the number of propagating modes is less essential than in HR and

tracking methods. As examples, a strong a priori is necessary for the initialization of

particle filtering [25], for the choice of the eigenvalues in MUSIC [20] or the order

of auto-regressive models as in [16, 18]. Also, the environmental parameters, as the

sound speed, may not be perfectly known without impacting the performance of the

approach (see experiments with real data in section 4.2). Note that, in cases of strong

environmental uncertainties, a simple and straightforward way to insure robustness will

be to extend the neighborhood of significative probabilities (indices n + 1 and n − 1

in (16)) to farther wavenumber bins (for example n + 2 and n − 2). Doing so, we

can compensate the uncertainty over the propagating environment by a more relaxed

probabilistic model. Note that the extreme case will be then to set all parameters pν+1,n
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Figure 3: Scheme summarizing the overall proposed methodology for f − k recon-
struction.

to a same value, resulting in the standard sparse case, as originally considered in [29].

Fig. 3 illustrates the entire f − k diagram estimation process. Given a frequency

index ν of the f − k plane, wavenumbers are estimated by solving the problem (13)

using SoBaP. Then Eq. (16) predicts the value of the Bernoulli parameter at the fre-

quency index ν + 1. The frequency is incremented to index ν + 1 and problem (13) is

solved using the updated Bernoulli parameters.

4 Applications

In this section, we propose two experimental setups to assess the performance of the

proposed method: to quantify the performance, we first consider synthetic experiments,

before applying the method on real data.
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(a) (b) (c)

Figure 4: Reconstruction of the dispersion curves (in dB) using measurements from 30
sensors and a signal to noise ratio of 10 dB: (a) LS inversion, (b) OMP, and (c) SoBaP
with dispersive a priori. The ground truth is represented by red points.

4.1 Simulations

The synthetic data are simulated using a Pekeris waveguide [30]. The water column

is assumed to be D = 130 m deep with a sound speed cwater = 1500 m/s and a den-

sity ρwater = 1 kg/m3. The seabed is a semi-infinite fluid layer with a sound speed of

cseabed = 2000 m/s and a density ρseabed = 2 kg/m3. The array is composed of 240 hy-

drophones lying on the seabed and with spacing ∆r = 25 m, resulting in a 6000 m long

antenna. The corresponding spectral resolution of the SFT is then 1.05×10−4 rad/m.

The source emits a broadband signal between 0 and 50 Hz (corresponding to a white

noise or an impulsive signal in the time domain, the latter case was simulated here).

The frequency resolution is ∆f = 0.2 Hz. The source is placed at D = 130 m depth

to avoid nodes of the modal functions. At 50 Hz, five modes are propagating.

Two sparse representation algorithms are compared for the resolution of the prob-

20



lem: Orthogonal Matching Pursuit (OMP) [43] as used in [24], and SoBaP incorpo-

rating a priori information on the dispersive propagation, as defined earlier. OMP

is stopped when ||yν − Dx̂ν ||2 <
√
Lσ2

w. SoBaP is stopped when the Kullback-

Leibler divergence between the distribution p(s,x|y) and its variational approximation

is smaller than 10−4. Both algorithms are compared to the least-square (LS) approach,

performing a simple inverse Fourier transform.

The resulting f − k diagrams are shown in Fig. 4 together with the ground truth,

represented by red points. For all three, 30 sensors are used and a signal-to-noise ratio

(SNR) of 10 dB is considered. To account for the CS framework, the positions of the

sensors are randomly selected from the 240 simulated measurements. At these settings,

the f − k diagram obtained by simple LS inversion and plotted in Fig. 4(a) cannot be

correctly interpreted to infer the expected wavenumbers: they do not appear clearly.

The one obtained by OMP seems to be more sensitive to noise; some wavenumbers are

identified but they have no physical justification. The use of the dispersive a priori in

SoBaP suppresses all of the artifacts from the f − k plane. These visual results are to

be compared with the ground truth, represented by red points on each f − k diagram.

To quantify more precisely the performance of the algorithms, we compute for each

of them the normalized Mean Square Error (MSE) between the estimated wavenumbers

(corresponding, for each frequency index ν, to the M [ν] largest coefficients in x̂ν) and

the true values of the Pekeris model. The error is averaged over the mode number and
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Figure 5: Normalized Mean Square Error (MSE) on the estimated wavenumbers (in
dB) as a function of: (a) the SNR for an array of L = 120 sensors and (b) the number
of sensors in the array for a SNR of 10 dB.

the frequencies to obtain a global value. The MSE is represented, in Fig. 5(a), as a

function of the SNR for a given number of sensors L = 120 and in Fig. 5(b), as a

function of the number of hydrophones exploited to reconstruct the f − k diagram for

a given SNR of 10 dB.

In accordance with previous works [25, 24], both figures illustrate the good be-

havior of sparse-aware algorithms with regard to naÃ¯ve LS inversion: OMP and the

proposed SoBaP procedure outperform the LS estimation in most practical setups, i.e.,

noisy measurements and few sensors.

As shown in Fig. 5(a), for an SNR greater than 20 dB, the two sparse-aware meth-

ods present similar performances, and an exact reconstruction of the wavenumbers is

obtained (note that the residual MSE is linked to the resolution of the Fourier matrix

D, independently of the number of measurements). The proposed approach proves to
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be more interesting in the noisy cases: we thus observe that the SoBaP procedure ex-

ploiting the frequency dependence between the wavenumbers shows a faster decrease

of the MSE as the SNR increases. For an SNR of 10 dB, the method reaches a MSE

around −35 dB, compared to −20 dB for OMP.

This particular setting is considered in more detail in Fig. 5(b), where the perfor-

mance at SNR= 10 dB is assessed from a sensor point of view. Within this setting, the

three methods achieve similar (poor) performance for very small numbers of sensors

(below L = 50). Note that this observation does not contradict the visual interpretation

of Fig. 4, as the MSE quantifies the position of the M [ν] largest estimated wavenum-

bers without any consideration over false alarms. Beyond 50 sensors, the proposed

SoBaP procedure outperforms indisputably the other two approaches.

4.2 North Sea data

In this section, we apply our approach to real data. The considered data was acquired

in the North Sea during a seismic campaign led by the Compagnie Générale de Géo-

physique [44, 45]. The source is an air gun, that is impulsive with a nearly flat spec-

trum between 0 and 80 Hz. Measurements are performed by a synthetic antenna of

240 ocean-bottom seismometers resting on the seabed. They are spaced at intervals of

25 m, leading to a total length of 6000 m. The pressure field is sampled at 250 Hz. The

environment is assumed to be close to a Pekeris waveguide. Within this assumption, the

experimental parameters were estimated [45] as: cwater = 1520 m/s, cseabed = 1875 m/s,
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(a) (b)

(c) (d)

Figure 6: Reconstruction of the dispersion curves (in dB) from the North Sea measure-
ments using: (a) 240 sensors with a LS inversion, (b) 20 sensors with a LS inversion,
(c) 20 sensors with the OMP algorithm and (d) 20 sensors with the physics-aware
SoBaP algorithm. Red points represent the result of a peak-picking method on the LS
inversion on the entire antenna (a).

D = 130 m. For this data, we evaluated the SNR around 13 dB.

Fig. 6 presents the f − k representations obtained by the inversion of 20 hy-

drophones with: (b) a simple LS method, (c) the OMP algorithm and (d) the SoBaP

algorithm exploiting the frequency dependence between the wavenumbers. As a com-

parison, the f −k diagram obtained with a LS inversion using the entire antenna is dis-
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played in Fig. 6(a). Moreover, on each figure, we have added in red the wavenumbers

selected from the LS inversion on the entire antenna (Fig. 6(a)) using a peak-picking

method. These results show the relevance of the proposed approach. We can thus see

that sparsity enables an undeniable improvement of the inversion (compared to the sim-

ple LS estimate) in particular in terms of noise suppression, but missed (in particular at

the highest frequencies) and false detections are still noticeable. Adding a prior knowl-

edge on the propagated wavenumbers allows us to recover perfectly the wavenumbers,

even at the highest frequencies (around 60 Hz in our case), while reducing the noise of

the f − k diagram.

5 Conclusion

This article deals with the estimation of the wavenumbers in shallow water environ-

ments. An array processing method is proposed to reduce the number of the sensors

required to separate accurately the wavenumbers over a wide range of frequencies. The

proposed method relies on two robust hypotheses. On the one hand, in the wavenum-

ber domain, the wavenumber spectrum is sparse. On the other hand, in the frequency

domain, the wavenumber spectra can be related from one frequency to the next using

a general dispersion relationship. These two hypotheses call for the utilization of a

Bayesian compressed-sensing (CS) algorithm. Indeed, the CS framework is suitable

for our sensing context, while the Bayesian framework enables a natural implementa-
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tion of the relation linking the wavenumbers from one frequency to the next.

The performance of the proposed method is assessed on simulations. Our algo-

rithm makes possible an accurate wavenumber estimation using a small number of hy-

drophones, even in noisy contexts. It outperforms other state-of-the-art methods such

as Least Square SFT (which does not benefit from any physical hypothesis) and Or-

thogonal Matching Pursuit (which benefits only from the sparse hypothesis): estimated

wavenumbers are more accurate, and the estimated f − k diagrams are globally less

noisy. Also, the method is validated on experimental data recorded in the North Sea.

In this context, the proposed method performs the estimation of the wavenumbers with

a 20-hydrophone HLA.

Because the proposed method is based on CS, it is naturally suitable for cases where

the number of measurements (i.e., hydrophones) is small and, ideally, randomly dis-

tributed. However, it does not necessarily help in reducing the required range aperture

(i.e., the HLA length). As a result, the method may not show its full strength on a

small HLA with constant hydrophone spacing. However, interesting perspectives arise

for analyzing (existing) synthetic aperture data, where the considered snapshots can

be chosen at will along the source/receiver track. Also, the potential of CS should be

taken into account when designing new at-sea experiment.
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