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Abstract
In this paper, we show the potential of machine learning regarding the task
of underwater source localization through a fluctuating ocean. Underwater
source localization is classically addressed under the angle of inversion tech-
niques. However, because an inversion scheme is necessarily based on the
knowledge of the environmental parameters, it may be not well adapted to
a random and fluctuating underwater channel. Conversely, machine learn-
ing only requires using a training database, the environmental characteristics
underlying the regression models. This makes machine learning adapted to
fluctuating channels. In this paper, we propose to use non linear regressions
for source localization in fluctuating oceans. The kernel regression as well
as the local linear regression are compared to typical inversion techniques,
namely Matched Field Beamforming and the algorithm MUSIC. Our experi-
ments use both real tank-based and simulated data, introduced in the works
of G. Real et al. Based on Monte Carlo iterations, we show that the machine
learning approaches may outperform the inversion techniques.
Keywords: Underwater source localization, fluctuating ocean, Machine
learning, Regression

1. Introduction1

In the underwater domain, the specific sound propagation properties2

make passive acoustics an interesting tool for underwater source localiza-3

tion. In this context, from the 70’s [1, 2] to the present day [3, 4], the inver-4

sion strategy has remained a methodological reference. By using inversion,5
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however, we necessarily make the strong assumption that the environmental6

properties are known, or at least known a priori. For instance, we must know7

the exact seabed depth distribution and the exact time-space distribution of8

both the temperature and the salinity. Unfortunately, these environmental9

parameters are in practice very fluctuating both in time and space, leading10

to strong mismatches between physical models and related real measures [5].11

It was otherwise shown that small amplitude environmental fluctuations may12

induce drastic changes in the propagated acoustic pressure field. The idea13

behind this phenomenon is that the effect of these small fluctuations of the14

propagation medium is cumulative (see the so-called δ-correlation approx-15

imation in [6]). These strong physical uncertainties make inversion a very16

tough task, so that researchers have developed some methods to jointly assess17

the source position and the environmental properties [7].18

On the other hand, in a lot of research fields such as computer vision and19

speech recognition, machine learning has become a methodological reference,20

especially in the context of big data and deep learning [8, 9]. In addition to21

enabling real-time processing, the technique has proved to be very successful22

in comparison to the common baselines. In the opposite direction of inversion23

methods, machine learning is a “black-box” approach which does not need24

for any physical prior knowledge. Regarding the task of underwater source25

localization, it will naturally consider all the environmental parameters as26

underlying the regression parameters learned during a training step.27

Machine learning has already proven its ability to accurately locate sources28

from sensor measurements. This is especially true in the field of robotics29

where a humanoid robot assesses a source position from a pair of acoustic30

sensors [10, 11]. But despite few works forecasting the relevance of ma-31

chine learning in future developments of underwater passive acoustic sys-32

tems (e.g. [12]), it has still never been used to locate underwater sources.33

One possible reason may lie in the fact that these methods require to build34

a training database beforehand, which may be impossible in certain rare,35

non-reproducible scenarios and, in any case, time consuming. However, we36

can a contrario target many situations where it is possible to acquire such37

groundtruthed databases. As an example, it is possible to register both time38

and space position of any oceanic event (e.g. seismic prospection, weather39

events, vessel activity) and to associate this event to the closest array mea-40

surement. Such an association between underwater acoustic measurements41

and the ocean activity has already been carried out in the context of weather42

forecast [13]. In the context of underwater source localization, we can think43
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of synthetic simulations, miming the real forecasted environmental character-44

istics, or, in situ acquired data, making use of underwater sound synthesizers45

or taking advantage of sources of opportunity and recording the received46

acoustic pressure.47

In this paper, we make use of two datasets introduced by G. Real et48

al. in [14, 15, 16, 17]. The first one is built from a software that simulates49

four increasing degrees of fluctuating environments. The other dataset is50

built from tank experiments where a “random lens” (called RAFAL in this51

paper, see section 4.1) simulates and reproduces the random effects of a52

fluctuating propagation channel. Both databases are interesting by their53

ability to synthesize increasing environmental deteriorations, from an ideal54

channel without any disturbance to a fully saturated environment [18].55

The main contribution of this paper is in using direct regressions for56

the task of underwater source localization. We experimentally demonstrate57

that machine learning may outperform the inversion techniques in fluctuating58

environments. In particular, we investigate two regression models: a kernel59

regression and a piecewise linear regression, which appeared to be well-suited60

to our case of interest.61

The paper is organized as follows. In section 2, we introduce the main62

principles of both inversion and machine learning for underwater source local-63

ization. In section 3, we present both the methods and the approximation we64

proposed to improve the computational efficiency. Then, in the experimental65

section 4, we compare the localization performance of the direct regressions66

with two of the main inversion references: the Matched Field Beamformer67

(MFBF) [19] and the MUSIC algorithm [20, 21]. This comparison is based on68

the measure of the localization error from Monte Carlo iterations. In section69

5, we propose a discussion about the limitations of our study and the future70

perspectives of such machine learning approaches. We finally conclude the71

paper in section 6.72

2. Problem statement73

We suppose that a source is emitting a monochromatic signal at frequency74

f from a position y ∈ RQ×1, where Q stands for the number of position coor-75

dinates, according to the propagation assumptions (plane, cylindric or spheric76

waves, 2D or 3D propagation). This signal is measured by a passive acoustic77

array composed of P sensors. Let z ∈ CP×1 be the Fourier Transform at fre-78

quency f of the complex measured acoustic pressure. For any measurement79
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z, we try to assess its related position y. Note that, in practice, underwater80

source localization considers several snapshots, i.e. a set of measurements81

{zn}Nn=1 for a single source position y. For a sake of clarity, we only present82

the methods for a single snapshot, a simple averaging strategy being carried83

out for several snapshots.84

2.1. Inversion for source localization85

An inversion technique considers the following optimization problem:86

ŷ = arg min
y
D [z, fθ(y)] , (1)

where the function D measures how much the current in situ observation z87

fits a given model fθ(y) ∈ CP×1.88

The model fθ(y) is an analytical deterministic expression which predicts89

the measured acoustic pressure from a source position y. The model param-90

eters θ may refer to any propagation properties such as the temperature,91

the salinity, the sound speed, the seabed characteristics or the transducer92

parameters. The analytical expression of fθ(y) may derive from a modal93

form of the sound propagation [22, 23]. Many contributions have focused on94

choosing an appropriated distance measure D. This distance often takes the95

form of a correlation-based measure [19]. In order to deal with the issue of96

measuring a distance in a high-dimensional space, other works (see [20, 21])97

consider the signal subspace projection by eigen decomposition, the distance98

D being computed in the mapped space. Sparse-based distance measures99

have furthermore proven their ability to be more accurate in the presence100

of multiple sources [24, 25, 3]. An other category of contributions includes101

the introduction of randomness and uncertainty to model the array noise102

or a fluctuating environment [26, 7, 27]. In that latter case, the inversion103

usually consists of assessing both the source position and the environmental104

properties, by maximizing a likelihood-based criterion:105

D [z, fθ(y)] = −p(z|y). (2)

More recently, the propagation uncertainty has been modeled by using the106

evidential theory [4]. Note finally that, although the optimization problem107

(1) is usually solved by grid search, we now find papers dealing with contin-108

uous optimizations [25].109
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2.2. Machine learning for source localization110

Without a loss of generality, we formalize the machine learning techniques111

considered in this paper as follows. Let R(z) (resp. I(z)) denotes the real112

(resp. imaginary) part of the complex pressure and x = {R(z), I(z)} ∈113

R2P×1 be the vector concatenating them. Then, machine learning directly114

assesses the related position y from a regression model:115

ŷ = gγ(x), (3)

where γ denotes the unknown regression parameters.116

With all precautions we have given in section 1, we suppose that we117

are able to build a training database {xn, yn}Nn=1, where xn ∈ R2P×1 and118

yn ∈ RQ×1. Machine learning consists then of optimizing the parameters γ119

from the training data {xn, yn}Nn=1. In comparison to the inversion paradigm,120

machine learning does not explicitely use the environmental parameters θ.121

They underlie however the dependencies between each pair of training sam-122

ples {xn, yn}, ∀n. These dependencies are then modeled by the regression123

function gγ for specific values of the parameters γ. In other words, while the124

channel characteristics θ clearly appear in the inversion expression (1), they125

disappear in the analytical regression expression (3), in favor of well-managed126

regression parameters. This makes machine learning highly interesting for127

random fluctuating environments.128

3. Non linear regression129

Regarding the specific application of passive underwater acoustics, we130

have experimentally observed that the location y can not be expressed as a131

linear combination of the components of x. This is illustrated in Figure 4132

where the error reaches its maximum value in the case of linear regression.133

Therefore, in this paper, we mainly focus on two non linear regression models,134

namely the local linear regression and the kernel regression.135

3.1. Local linear regression136

Let us first consider the linear regression model:137

gγ(x) = Ax, (4)

where γ = A ∈ RQ×P . In the training step, the matrix A is learned from138

the training database {xn, yn}Nn=1 as follows. Let X = [x1, . . . , xN ] (resp.139
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Y = [y1, . . . , yN ]) be the matrix of the concatenated {xn}Nn=1 (resp. {yn}Nn=1),140

we look for A satisfying Y = AX, or equivalently Y T = XTAT . This can be141

achieved by solving, ∀i ∈ {1, . . . , Q},142

âi = arg min
ai

∥∥∥ỹi −XTai
∥∥∥2

2
+ µ ‖ai‖2

2 , (5)

where ai is the i-th row of A (or equivalently the i-th column of AT ) and ỹi143

is the i-th column of Y T .144

Without any a priori on the expected values in âi, we chose the ridge145

regularization ‖ai‖2
2 to help improving the conditioning of the problem (see146

e.g. [28]). This choice leads to a convex and differentiable problem, for which147

simple and efficient resolution algorithms exist, as the well-known gradient148

algorithm. The value of µ, determining the weight of the regularization term149

over the data-attached term
∥∥∥ỹi −XTai

∥∥∥2

2
, is further discussed in section 4.4.150

To extend the linear model (4) to a non-linear one, a common strategy151

consists of fitting a piecewise linear regression [11]. The feature space is first152

partitioned into K clusters by using any clustering technique. In our case,153

we use a fast implementation of K-means [29]. Let Ik(x) = 1 if x belongs to154

the cluster indexed by k, Ik(x) = 0 else. The piecewise non linear regression155

takes thus the form of a sum representing the contribution of each cluster:156

gγ(x) =
K∑
k=1

Ik(x)Akx, (6)

where each matrix Ak ∈ RQ×P is learned by using the training samples157

that belong to the cluster k only, and γ = {Ak}Kk=1. In a formal way, the158

optimization problem we use to train each matrix Ak is then defined as,159

∀i ∈ {1, . . . , Q},160

â
(k)
i = arg min

ai

∥∥∥ỹ(k)
i −XT

k ai
∥∥∥2

2
+ µ ‖ai‖2

2 , (7)

where Xk (resp. Yk) is the matrix made up of the xn (resp. yn) such as161

Ik(xn) = 1 and ỹ(k)
i is the i-th column of Y T

k . The resolution of (7) is then162

the same as for problem (5).163

3.2. Kernel regression164

Kernel regression is one of the first proposed non linear regression tech-165

niques [30]. The method aims at approximating the conditional expectation166
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E[y|x]. Introducing the parametric kernel Kγ(x) = exp−‖x‖
2

γ
, this is empiri-167

cally achieved by the following regression model:168

gγ(x) =

N∑
n=1

Kγ(x− xn) yn
N∑
n=1

Kγ(x− xn)
' E[y|x] (8)

This kernel regression does not require a training step, the equation (8)169

being directly expressed as a function of the training data {xn, yn}Nn=1. How-170

ever, this method may produce a huge computational cost because computing171

(8) depends on both the size of the training dataset (N) and the size of the172

measured vector (2P ). Regarding the problem of source localization in a 3D173

environment from a large sensor array, we potentially have many training174

samples living in a high-dimensional space. Consequently, for computational175

efficiency, we consider a L-nearest neighbor-based approximation [31] of the176

kernel model (8):177

gγ(x) = 1
L

∑
n∈SL(x)

yn, (9)

where the set SL(x) contains the index values of the L-nearest neighbors of178

x. The algorithm is thus very fast, only consisting of computing the squared179

Euclidean distance ‖x−xn‖2
2, ∀n, and then, of averaging the source position180

of the L closest samples.181

4. Experiments182

The evaluation databases and the evaluation protocol are respectively183

presented in section 4.1 and 4.2, while the main results are presented in184

section 4.3. Finally, in section 4.4, we analyze the parameter sensitivity as185

well as the way we set the free parameters.186

4.1. Evaluation databases187

The experiments are based on two databases collected by G. Real et. al.188

[14]. They are composed of experimental signals acquired in a water tank189

and of the corresponding parabolic equation (PE) simulations. The following190

paragraphs are dedicated to the description of the tank experiments. The191

PE code reenacts the experiment using a 3D propagation code adapted from192

the one developed by X. Cristol et. al. [32].193
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4.1.1. Acquisition protocol194

A scaled experimental protocol was developed in order to reproduce faith-195

fully the influence of spatial sound speed fluctuations in an oceanic medium196

perturbed by phenomena such as linear internal waves. A mobile transducer197

transmits an ultrasonic wave through a RAndom Faced Acoustic Lens (or198

RAFAL) presenting a plane “input” face and a randomly rough “output”199

face. The random roughness of the output profile induces distortions to the200

propagated acoustic field. The latter is recorded using a mobile hydrophone201

whose automatic displacements allow to simulate virtual linear arrays. A202

diagram of this experiment is proposed in Figure 1.203

Figure 1: Tank experiment diagram.

From the mobile hydrophone, 65-elements virtual arrays were simulated,204

e.g. P = 65. The hydrophone displacement was of 0.3 mm in order to satisfy205

the sampling criterion (displacement < λ/2, where λ = 0.665 mm denotes the206

wavelength of the emitted signal in a fresh water at 20 degrees). The emitted207

signal is then a monochromatic wave train at a frequency f = 2.25 MHz.208
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The transducer is also fixed on a motorized rail, which allows to acoustically209

highlight statistically independent areas on the RAFAL. Therefore, multiple210

realizations of the same process can be obtained, and statistical studies can211

be carried out.212

4.1.2. Dimensional analysis213

The induced acoustic distortions are compared to what can be observed214

in a fluctuating ocean using a dimensional analysis [16]. The evaluation of215

the strength and diffraction parameters (respectively noted Φ and Λ) de-216

fined by Flatté [18] allows us to qualitatively relate the acoustic features217

in our experimental configurations and in an oceanic medium. Calculations218

(detailed in [17]) provide analytical expressions depending on a set of pa-219

rameters including signal frequency, propagation distance, RAFAL’s output220

face random roughness amplitude, vertical and horizontal correlation lengths.221

Equating the henceforth obtained dimensional parameters in this case and222

in the oceanic case provides a direct correspondence between sets of param-223

eters in both configurations. In the ocean, the parameters involved in the224

calculation of Φ and Λ are the signal frequency, the sound speed fluctu-225

ations amplitude and correlation lengths (horizontal and vertical) and the226

propagation range. This scaling procedure allows us to, in a controlled and227

reproducible fashion, acquire acoustic data spanning the various regimes of228

fluctuations introduced by Flatté [18]:229

• The unsaturation (UnS) regime, where phase fluctuations due to medium230

inhomogeneities.231

• The partially saturated (PS) regime, where the appearance of corre-232

lated micropaths is likely.233

• The fully saturated (FS) regime, where uncorrelated micropaths ap-234

pear.235

In addition, a flat regime (Flat) is added to this study: this is the case236

where the RAFAL’s output face was flat as well (no fluctuations induced).237

The quantitative accuracy of this scaling process is measured using the mu-238

tual coherence function. Both qualitative and quantitative relevance of the239

presented experimental scheme were validated in [16, 17]. Moreover, the240

influence of the signal fluctuations on the loss of array gain was exhibited241

in [15]. These results emphasize the need for innovative signal processing242

9



techniques regarding detection and localization of acoustic sources, such as243

proposed in the present paper.244

Tank experiments software
Flat lens (Flat) N = 845 N = 960

Unsaturated regime (UnS) N = 7098 N = 81792
Partially Saturated regime (PS) N = 5577 N = 115200
Fully Saturated regime (UnS) N = 6084 N = 120960

Table 1: Number of training samples (N) for each configuration.

4.2. Evaluation protocol245

A total of 80 Monte Carlo iterations is carried out. For each of them,246

we randomly select a position y and pick 10 corresponding signals measured247

on the antenna from the dataset. The remaining signals are used as train-248

ing data to learn the regressions exposed above. The resulting size of the249

training dataset is given in Table 1 for each fluctuation scenario. To assess250

the robustness to noise of the different approaches, a zero-mean Gaussian251

noise of varying variance is added to each of the 10 test snapshots. This252

protocol allows us to compare the localization performance of both inversion253

and regression from exactly the same data.254

In order to measure the localization performance, at each Monte Carlo255

iteration, we measure the L1-based distance between the estimated position256

and the groundtruthed position: ‖y − ŷ‖1. An alternative solution consists257

of using a L2-based distance ‖y− ŷ‖2, but we may be misled by an averaging258

effect. Note that both the vertical and the horizontal positions are normalized259

by the domain range [ymin, ymax] that we use for the grid search inversion in260

equation (1), where ymin, ymin ∈ RQ×1. This normalization is necessary to261

give every space components an equal weight. The error is finally averaged262

over the 80 Monte-Carlo iterations to obtain a global value.263

Four localization methods are compared: the local linear regression (sec-
tion 3.1), the kernel regression (section 3.2), and two typical inversion strate-
gies, namely the Matched Field Beamforming (MFBF) [19] and the algorithm
MUSIC [20, 21]. For those latter, we consider the following replica model,
attached to the considered tank experiments [17]:

a(r, φ) = S
(2π
λ
ρ sin(φ)

)
e−j

2π
λ
r, (10)
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(d) Software-based, SNR=10dB

Figure 2: Source localization error as a function of the channel perturbation
regime.

where r and φ are respectively the propagation distance and the source ele-264

vation angle and constitute the position coordinates of interest, ρ = 6.5 mm265

the transducer radius and S(.) stands for the so-called Sombrero function as266

defined in [33].267

4.3. Main results268

In Figures 2 and 3, the regression methods are represented by continuous269

lines while the inversion ones are represented by dashed lines. In order to re-270

alize how much these methods perform, we also report the localization results271
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(b) Tank experiments, fully saturated
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(d) Software-based, fully saturated

Figure 3: Source localization error as a function of the Signal to Noise Ratio
(SNR) in decibel.

from a random source placement. In the figures, this method is qualified as272

“random” in the figures and represented by dot lines.273

In Figure 2, we report the localization errors as a function of the chan-274

nel perturbation regime, from a Flat regime without perturbation to a fully275

saturated regime (FS). As expected, the improvement led by the regres-276

sion methods is more visible when the fluctuations become larger (the gap277

between regression and inversion methods increases). We notice that in av-278

erage the regression outperforms the inversion-based method. But, the most279

interesting observation is that a machine learning strategy is more recom-280

mended for fluctuating regimes where the environmental characteristic θ are281

12



unknown and the mismatch between fθ(y) and z reaches its maximum. In-282

deed, for the two regression techniques, the localization performance remains283

quite stable from the unsaturated regime (UnS) to the fully saturated regime284

(FS). In comparison, the localization error obtained by the inversion meth-285

ods increases when the channel fluctuation increases. This trend is perfectly286

illustrated in Figure 2d: while inversion and regression provide quite similar287

performance for both the Flat and the unsaturated regimes (UnS), regres-288

sion outperforms inversion for both the partially saturated (PS) and fully289

saturated regimes (FS).290

The above description remains valid regarding Figure 3, where we have291

reported the source localization error as a function of the SNR in decibel.292

As expected, the higher the SNR, the less the error. We observe the general293

trend that machine learning outperforms inversion, not only regarding the294

way the channel is fluctuating, but also regarding the robustness to the noise.295

This is especially true for highly saturated regimes (Figure 3b and Figure 3d).296

From both Figure 2 and Figure 3, we observe that the kernel regression297

slightly outperforms the local linear regression. This is mainly due to the298

fact that the kernel regression is a continuous model. Conversely, the local299

linear regression is based on a vector quantization of the feature space by300

using a K-means clustering. The localization performance of the local lin-301

ear regression thus depends on the space partition we get. The ideal local302

regression would consider a supervised learning of this partition. In other303

words, we should solve an optimization problem that learns the best clus-304

tering realization for each targeted database. Placing the clustering problem305

into a Bayesian framework, we could also consider using an Expectation-306

Maximization (EM) algorithm (as e.g. in [34]) to weight the contributions307

of the entire dataset rather than an “in-out” strategy.308

We explain the poor results obtained by MUSIC by the weak number309

of snapshots we simulated. Actually, we use only 10 snapshots, which is310

not enough to correctly assess the covariance matrix on which the eigen311

decomposition is based.312

In Table 2, we analyze the standard deviation of the error we obtain313

from the 80 Monte Carlo iterations. The standard deviation is reported as314

a function of the saturation regime (Flat, UnS, PS, FS), and for different315

values of the SNR. For the task of source localization or source classification,316

we often observe that the better a method performs, the less the standard317

deviation. Following this trend, the standard deviation due to the regression318

is less important than the one obtained from the inversion techniques. This319
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(a) Tank-based experiments:
Fluctuating regime Flat UnS PS FS

SNR (dB) -10 +10 -10 +10 -10 +10 -10 +10
kernel regression 0.11 0.00 0.26 0.21 0.22 0.19 0.22 0.16

MFBF 0.17 0.11 0.31 0.28 0.30 0.26 0.30 0.28

(b) Software-based experiments:
Fluctuating regime Flat UnS PS FS

SNR (dB) -10 +10 -10 +10 -10 +10 -10 +10
kernel regression 0.16 0.02 0.29 0.22 0.23 0.11 0.21 0.12

MFBF 0.11 0.04 0.26 0.17 0.26 0.24 0.28 0.22

Table 2: The standard deviation of the localization error from the Monte
Carlo iterations is reported as a function of both the fluctuating regime (Flat,
Unsaturated (UnS), Partially Saturated (PS) and Fully Saturated (FS) and
the signal to noise ration (SNR). The standard deviation is reported for both
(a) the tank-based experiments and (b) the simulated experiments.

is even truer when the channel perturbation increases.320

4.4. Parameter sensitivity321

For the sake of simplicity and to reduce the computational time, the322

sensitivity of the free parameters (namely µ and K in (6)-(7), L in (9)) is323

analyzed on a single scenario. We consider the specific case of UnSaturated324

regime (UnS) and a SNR that equals 30 dB. In addition, we consider a single325

random split to design training and test data, and there are only 10 iterations326

to generate the random additive noise.327

The sensitivity of the local linear regression is reported in Figure 4. The328

localization error is evaluated as a function of both the number of nearest329

neighbors L and the regularization parameter µ. As expected, the higher K,330

the higher it outperforms. This illustrates that a pure linear regression (K =331

1) does not satisfy our non-linear problem. Regarding the regularization332

parameter µ, we are encouraged to use low values. Indeed, for value such333

that µ 6 10−1, the localization performance remains stable. Note that this334

experiment points out the interest of using a ridge constraint, the optimal335

values being different from µ = 0 for K 6 512 in equation (6).336

The sensitivity of the kernel parameter L is studied in Figure 5. From this337

result, we notice that, for this specific scenario, the localization performances338

are quite stable in the range L ∈ [4, 128].339
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Figure 4: Parameter sensitivity of the local linear regression. The average L1
error is reported as a function of both the regularization parameter µ and the
number of clusters K.
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Figure 5: Parameter sensitivity of the kernel regression. The average L1 error
is reported as a function of the number of nearest neighbors L.

The baseline MUSIC relies on a separation between the noise and the340

signal. This classification is based on a projection onto a basis defined by341

the eigen vectors that correspond to the lowest eigen values. We must set342

the number of lowest eigen values, say δ, i.e. the size of the projection343

space. In Figure 6, we report the localization performance as a function of344

the projection space dimension δ. Based on this analysis, we encourage to345

consider a space size in the range δ ∈ [5, 20].346

We use this sensitivity analysis to set the free parameters of each local-347

ization method. In machine learning, these parameters are usually set by348
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Figure 6: Parameter sensitivity of MUSIC algorithm. The average L1 error is
reported as a function of the size δ of the projection size.

cross-validation. In this paper, instead, for the sake of simplicity and to re-349

duce the computational time, we set these parameters on the single previous350

scenario that we use to analyze the parameter sensitivity. From this specific351

scenario, Figure 4 shows that localization performances are quite stable for352

K > 512 and µ 6 10−1, the regularization parameter for the local linear353

regression is thus set to µ = 10−4 and the number of clusters to K = 4096.354

In the same way, Figure 5 shows that the error is quite satisfactory in the355

range L ∈ [4, 128], the number of nearest neighbors for kernel regression is356

thus set to L = 8. From Figure 6, we conclude that the size of the projection357

space should be in the range δ ∈ [5, 20], we set it to δ = 10.358

5. Discussion and perspectives359

The quantitative analysis of section 4 illustrates how much machine learn-360

ing may be efficient with regards to source localization in fluctuating envi-361

ronments. However, their robustness to the uncertainties of the propagation362

medium has a counterparty: their precision and performance are directly363

linked to the representativeness of available training data. Machine learn-364

ing could therefore be of interest for example within acoustic observatories,365

where data can be collected during long periods, making use of sources of366

opportunity.367

Conversely, machine learning may not be a relevant approach in complex368

configurations when only few training data is acquired. In such a scenario,369

we encourage to fuse the knowledge we have from the acoustic propagation370

and the one that training data can provide. An inversion scheme with a371

physical acoustic model can actually benefit from the real few measures of372

the fluctuations. In this context, a fusing model, that integrates the decisions373

from both acoustic replica model and machine learning-based model, would374

be appropriated. More generally, in the case where there is not enough in situ375

training data, the training database we handle to train regression parameters376

can be extended by using synthetic samples from the acoustic replica model.377
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The clear need for an exhaustive training database is not the only one378

drawback we can identify by using a machine learning approach. Indeed,379

in underwater acoustic, detecting several signals at the same time in not380

straightforward. The method we have proposed here only support a single381

source. A conventional beamformer, or any matched field technique, bases382

its multi-source localizer from a threshold which is applied to the spectrum383

output. Following this idea, we can propose an inversion scheme by using384

a regression. This specific regression would predict the antenna measure385

from the source position. An other solution consists of registering a training386

database that considers a set of records in the presence of several sources.387

Finally, we would emphasize that detecting a source position from under-388

acoustic measurements is not the only one task the underwater acoustician389

is interested in. Because inversion requires a replica model of the acoustic390

measure that depends on several environmental parameters, it would be in-391

teresting to assess these parameters from machine learning. For instance,392

the celerity profiles and the seabed properties may be assessed by machine393

learning. In the same way, the task of detecting the source presence/absence394

can also be dealt by machine learning. Especially given that the experimen-395

tal training data acquisition seams easier in this case, indeed, we do not need396

to know the exact source position. Note that, unlike this paper which con-397

siders a monochromatic signal, in order to consider such new applications,398

we would have to use other acoustic signatures in order to model the hidden399

involved parameters. Time-frequency parameters would be on top of interest400

in such a case.401

6. Conclusion402

In this paper, we have addressed the task of source localization in fluc-403

tuating underwater environments from a machine learning point of view. In404

particular, two regression methods are confronted to two classical inversion405

approaches, namely a Matched Field Beamforming and the MUSIC algo-406

rithm. The data considered to train and test the regression approaches have407

been collected in tank conditions [15]. They constitute ideal study subjects408

for machine learning approaches: they reproduce fluctuating environments in409

closed and well-mastered settings. In a more general view, they give insight410

into the performance that should be achieved by machine learning methods411

within localization of underwater sources.412
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The quantitative analysis we carried out illustrates the potential of ma-413

chine learning regarding fluctuating environments. More precisely, our exper-414

iments show that the source localization error is decreased by using machine415

learning. In this regard, their good behavior tends to underline their interest416

in more general settings. In particular, they do not rely on an explicit prop-417

agation model and reveal thus suitable to situations where no or too few a418

priori information is available on the environmental characteristics.419
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