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Abstract. An important question for both signal processing and audi-
tory science is to understand which features of a sound carry the most
important information for the listener. Here we approach the issue by
introducing the idea of “auditory sketches”: sparse representations of
sounds, severely impoverished compared to the original, which neverthe-
less afford good performance on a given perceptual task. Starting from
biologically-grounded representations (auditory models), a sketch is ob-
tained by reconstructing a highly under-sampled selection of elementary
atoms. Then, the sketch is evaluated with a psychophysical experiment
involving human listeners. The process can be repeated iteratively. As a
proof of concept, we present data for an emotion recognition task with
short non-verbal sounds. We investigate 1/ the type of auditory repre-
sentation that can be used for sketches 2/ the selection procedure to
sparsify such representations 3/ the smallest number of atoms that can
be kept 4/ the robustness to noise. Results indicate that it is possible
to produce recognizable sketches with a very small number of atoms
per second. Furthermore, at least in our experimental setup, a simple
and fast under-sampling method based on selecting local maxima of the
representation seems to perform as well or better than a more tradi-
tional algorithm aimed at minimizing the reconstruction error. Thus,
auditory sketches may be a useful tool for choosing sparse dictionaries,
and also for identifying the minimal set of features required in a specific
perceptual task.

1 Introduction

Sound signals are one-dimensional time series, reflecting the variation of acoustic
pressure in the air. There is a variety of ways to represent such time-series,
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starting with Fourier transforms or wavelet analyses [1]. Each representation
is defined in a set of basis functions on which the time-series are projected:
complex exponentials for the Fourier analysis, or dilated and translated versions
of a mother wavelet for wavelets. In an “atomistic” view of this analysis process
[2], the set of basis functions is often called the “dictionary”, and its elements
the “atoms”. Desirable properties for a dictionary may be the orthogonality
between elements, or its completeness and invertibility (i.e., it is possible to
represent any signal and transform it back without any loss of information).
More recently, for applications such as source separation or denoising, further
properties have been shown to be useful, such as sparsity (see [3] for a review),
where only a few non-zeros coefficients can be used to represent a signal. In
practice, exact sparsity is never achieved for sound signals, but still most of
them can be well approximated by sparse representations (the approximation
error decays quickly as the number of terms increases), a property often referred
to as compressibility. Such sparse representations are usually computed through
some non-linear algorithms, optimizing a balance between sparsity and data
fidelity [4].

The size and nature of the (possibly over-complete) dictionary must be care-
fully chosen, as larger dictionaries tend to provide sparser representations, but
the computational cost of the associated estimation algorithms may become
prohibitive, and high coherence in the dictionary elements may result in identifi-
ability issues. The choice of the dictionary elements, or “atoms”, is also of prime
importance, as these must be designed to fit local features of the signals under
study ; they can be chosen a priori or learnt on the data itself [5].

In this paper, we outline an original method for investigating sparse repre-
sentations of sound signals, based on perceptual considerations. The underlying
idea is simple: sounds are not just any time-series, they are time-series that are
being perceived by listeners. As a consequence, not all information in sound is
relevant for a given listening task. For instance, speech content is remarkably
resilient to large acoustic distortions [6], showing that a massive information-
loss can be tolerated for tasks like speech intelligibility in quiet. The key is that
the distortion should preserve a small but sufficient set of features for the task.
Here we introduce the metaphor of an “auditory sketch”: a sketch is a signal
that has been severely impoverished compared to the original sound, and thus
is clearly distinguishable from it, but that still retains enough of the original
critical features to afford good performance on a target task.

A schematic of the work flow we suggest to obtain auditory sketches is pre-
sented on Fig. 1. The method is iterative, and places the listener at the centre of
the design loop. The first proposal is to use auditory models. Auditory models re-
fer to a class of signal-processing algorithms trying to mimick the way the acous-
tic signal is transformed along the human auditory pathways. For instance, the
cochlea performs a time-frequency decomposition, which can be approximated
to a first degree by a bank of overlapping band-pass filters [7]. The resulting
representation is often termed an “auditory spectrogram”. Subsequent stages of
processing in the auditory pathways display more complex processes, which are
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Fig. 1. Overview of the sketch design method. An auditory representation of a natural
sound is generated (in this example, an auditory spectrogram) and only a few features
are retained. The auditory model is then inverted for re-synthesis of the candidate
sketch. Psychophysical experiments involving human listeners are then used to evaluate
the efficiency of the selected features. The process is repeated iteratively to discover a
sparse set of features that afford good performance with sound class and task at hand.

currently only poorly understood. For instance, neurons in the primary audi-
tory cortex exhibit a variety of selectivity to spectro-temporal features such as
spectral, temporal, or joint-spectral temporal modulations. Models nevertheless
exist to idealise such a processing as a bank of 2-D wavelets operating on the
auditory spectrogram [8]. Such schematic “cortical” representations have been
shown, for instance, to be sufficiently rich to be an efficient front-end for timbre
classification [9].

It is hoped that, because they are inspired by the physiology of the human
ear, such auditory representations will contain the features that are relevant to
perception. However, these representations are massively over-complete, so it is
not obvious to assess which part of the representation is relevant for a given task.
This is where we use a second step in the sketches method: the representations
are sparsified by keeping only a small set of non-zero coefficients. A variety of
selection algorithms can be envisioned, as discussed below.

Finally, to check that the relevant features have been preserved, we invert the
sparse representations back into sound signals. The resulting sounds are then
used in psychophysical tests with human listeners. The process should be re-
peated iteratively until the selection of sparse features affords good performance
on the target perceptual task.

In this paper, we present preliminary data as a proof of concept for the
sketches process. We compare two different auditory models, aimed at represent-
ing two distinct stages of auditory processing: the auditory spectrogram and the
cortical representation [8]. The selection of non-zero coefficients from the models
is obviously a central issue, and here we compare two potential candidates: a sim-
ple peak-picking algorithm, and an analysis-based iterative thresholding method
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[10]. Finally, the psychophysical task chosen is that of recognition of emotion in
short sound snippets. Sounds are extracted from a calibrated database of nat-
ural emotional signals [11], transformed as sketches, and then listeners have to
identify the original emotion in a forced-choice task (happiness, anger, sadness,
disgust). Only the first iteration in the method is tested.

2 Sparse Representations of Sounds: Dictionaries and
Algorithms

The “sketching” problem we are interested in can be formalized as follows. We
look for the sketch x ∈ RN , representation of the audio signal y such as

y = x+ ε, (1)

where ε stands for the difference between the original audio signal y and its
sketch x. Within our study, the sketch x is then assumed to have a sparse
representation in a given dictionary.

Traditionally, the quality of the sparse representation is measured both in
terms of sparsity and approximation (i.e., the fidelity to the original signal). It
depends on the dictionary in which the decomposition is performed, and the pro-
cedure for the selection of sparse features (and the corresponding algorithms).
Here, an additional stage is considered. Following the algorithmic procedure im-
plementing the sparse decomposition, the appropriateness of the resulting sketch
to the target task is further tested through a psychophysical evaluation (see
Fig. 1). Ideally, the whole procedure is then iterated to refine both the dictio-
nary and the procedure for the selection of sparse features (in terms of objective
functions, sparsity levels and algorithms). In this section, we discuss a priori
choices for the dictionary, in Subsect. 2.1, and the decomposition procedures,
in Subsect. 2.2. These can be thought of as reasonable initial conditions for the
sketches process. In the context of this paper, they also serve to illustrate the
potential of the method.

2.1 Auditory-Motivated Dictionaries

The choice of the dictionary is deeply related to the targeted application. In
denoising tasks, for example, emphasis may be put on the match to the charac-
teristics of the signal itself. Here, we will favour biologically-inspired dictionaries
that take into account the ear physiology. The underlying hypothesis is that per-
ception is shaped by the neural processing of sound. For instance, the frequency
selectivity observed in auditory masking (which part of the sound will effectively
be detected by a listener) is thought to be linked to frequency selectivity on the
cochlea.

We chose to use the auditory model described by Chi et al. [8] and freely
available as the “NSL toolbox”1. As mentioned in the introduction, the model

1 http://www.isr.umd.edu/Labs/NSL/Software.htm

http://www.isr.umd.edu/Labs/NSL/Software.htm
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includes both an auditory spectrogram and a “cortical” spectro-temporal anal-
ysis of the spectrogram. It has proved successful for several signal-processing
applications, such speech intelligibility assessment [12], or computational mod-
eling of timbre perception [9].

The model consists of two major auditory transformations:

i) The early stage transforms the one-dimensional acoustic waveform to a two-
dimensional pattern obtained with a bank of constant-Q filters, followed by
spectral sharpening (lateral inhibition) and compression. Fig. 2 illustrates
the result of such a transformation, producing what is termed an auditory
spectrogram.
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Fig. 2. Example of an auditory spectrogram (AU: arbitrary units, log scale). The sound
analyzed is a short affect burst expressing anger [11]. The voiced quality of the sound
is visible in the harmonic structure of the frequency components, which are themselves
shaped by the vocal formants. A continuous glide of the fundamental frequency (up
then down) is also salient.

ii) The cortical stage implements then a more complex spectrotemporal analy-
sis, presumed to take place in the mammalian primary auditory cortex. The
transformation relies on a bank of filters, selective to different spectrotem-
poral modulation parameters which range from slow to fast rates temporally
and from narrow to broad scales spectrally. It results in a four-dimensional,
time-frequency-scale-rate representation, referred to as the cortical represen-
tation of the signal. A detailed description of such a representation is beyond
the scope of the paper, the reader is refered to [8]. Fig. 3 nevertheless illus-
trates some features of the cortical representation.



Auditory Sketches: Sparse Representations of Sounds 159

S
ca

le
 (

cy
c/

oc
t)

Upward (log2 Hz)
−  1.−  2.−  4.−  8.− 16.− 32.

0.50

1.00

2.00

4.00

8.00

Downward (log2 Hz)
  1.   2.   4.   8.  16.  32.

0.50

1.00

2.00

4.00

8.00

A
U

0

0.01

0.02

0.03

0.04

0.05

Fig. 3. Example of a cortical representation (AU: arbitrary units). The sound is the
same as in Fig. 2. We only illustrate the projection of the 4-D cortical representation
on the “rate” and “scale” dimensions (the cortical representation was averaged over
time and over frequency channels). The pattern of rate and scale coefficients describe
the spectro-temporal evolution of the sound. For instance, because the fundamental
frequency glide induces temporal amplitude modulations in many frequency channels,
there is a range of non-zero modulation rates in the representation. The left and right
panels are for upward and downward spectro-temporal modulations, respectively (see
[8] for details).

Because our method relies on a listening test, an important issue is the in-
vertibility of the representations used. If phases are preserved, the (standard or
auditory) spectrograms are easily invertible, akin to the overlap-add resynthesis
procedure of the standard spectrogram. However, if non-linear processing makes
phase information meaningless, as is the case here (lateral inhibition, threshold-
ing, compression), perfect reconstruction cannot be achieved.

In order to obtain time-domain signals that are compatible with the spectro-
gram, one can resort to phase estimation algorithms that exploit the intrinsic
redundancy of the transforms, such as the Griffin and Lim [13] phase recon-
struction iterative procedure, or improvements thereof (see [14] for a review).
It should be noted that this algorithm reconstructs a set of phases that are
consistent, but that may be completely different from the original phases, thus
precluding any time-domain sample-by-sample comparison. Here, we use the
method of [15], developed for auditory spectrograms and which provides recon-
structions that are highly perceptually similar to the original signal, whenever
the auditory spectrogram is not modified.

The parameters chosen for the model of [8] were as follows. The audio sig-
nals were sampled at 16kHz. The auditory spectrogram was obtained with a
bank of 128 bandpass filters and 8-ms time windows. The cortical stage had 5
rate channels for temporal modulations (from 1 to 32Hz) and 6 scale channels
for spectral modulation (from 0.5 to 8 cycles/octave), resulting in a redundant
representation 60-times larger than the original signal.
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2.2 Sparsification of Auditory Models

The next step in the design of sketches is the choice of a selection procedure
for the features. Here again many choices are possible. Note that the iterative
method of Fig. 1 is conceived precisely as a way to refine the selection process.
As a first step, to gain some insight into the kind of methods that could serve
as initial choices in the iterative process, we compare two selection procedures
contrasting two different approaches:

– Algorithm IHT (iterative hard thresholding), based on a sparse analysis
scheme

– Algorithm PP (peak-picking), based on peak-picking of local maxima

It is important to stress that, as we shall discuss, these two procedures are not
just different from an algorithmic point of view. More importantly, one of them
aims at optimizing the quadratic reconstruction error (IHT), while the other
(PP) is purely feedforward and does not include any optimization step. In both
cases, the ultimate success of the selection or otherwise is estimated by means
of the perceptual task.

Algorithm IHT: Sparse Analysis by Iterative Hard Thresholding. Two
mathematical sparsity formalisms are possible, according to the adopted –
analysis or synthesis – approach. On the one hand, from the analysis point
of view and within our sketching problem, the sketch x is assumed to produce a
sparse output, which can be expressed under a matrix formulation as

z = Ax, (2)

where z ∈ RM is sparse, i.e., contains few non-zero elements, andA is a (M×N)-
matrix with M ≥ N representing the analysis operator. On the other hand, from
the synthesis point of view, the sketch x is seen as the sparse combination of
atoms, namely

x = Dz, (3)

where D is a (N ×M)-matrix with M ≥ N representing the dictionary, and z
is sparse.

Within the sparse-representation framework, the synthesis approach consti-
tutes the most common formalism, being the subject of numerous contributions
(see e.g., [16] for a review of the algorithms dealing with synthesis sparsity).
However, as described above, the representations we chose rely on a sequence
of filters applied to the signal and analyzing their outputs, which tends to favor
the analysis point of view.

Furthermore, the sparsity constraint in which we are interested in is not taken
into account in the same way within both formalisms. The synthesis formulation,
by its generative nature, leads potentially to a greater compactness of the signal.
But, with this formulation, the choice of the atoms to represent the signal has
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huge implications: a wrong decision may cause the selection of additional wrong
atoms as compensation. This is not the case with the analysis formulation, where
all atoms contribute equally to the representation of the signal [17]. We will thus
adopt the analysis point of view in the remain of the paper. Hence, depending
on the processing level, a sketch x of the audio signal y is built from a sparse
auditory spectrogram or a sparse cortical representation of the signal y.

Considering the analysis formulation (2), the estimation of the sketch x can
then be expressed as

x� = argmin
x

||y − x||22 subject to ||Ax||0 ≤ L, (4)

where ‖.‖0 denotes the �0 pseudo-norm, counting the number of non-zero
elements, and L is a parameter specifying the maximum number of non-zero
elements in z.

Finding the exact solution of (4) is an NP-hard problem, i.e., it generally
requires a combinatorial search over the entire solution space. Here, we use a
suboptimal (but tractable) algorithm based on the iterative hard thresholding
procedure introduced in [10]. This algorithm presents indeed several desirable
properties:

i) Its implementation is very simple, in accordance with a filter-bank procedure,
as considered within our model (see Subsect. 2.1).

ii) Its complexity is low, in O(N logN), N being the number of iterations.
This property is very valuable since the considered biologically inspired
model involves complex mathematical computations, requiring thus a light
integration procedure.

Note that the analysis-based IHT algorithm is different from the most standard
synthesis-based iterative hard thresholding algorithms in the literature [18], often
used in the framework of compressed sensing.

Algorithm PP: Peak-Picking of Local Maxima. The second algorithm
considered in this paper is based on a simple local maxima detection.

The procedure, with variants already used in the literature (see e.g., [19,20]),
is based on a local gradient evaluation. In our case, the peak-picking was done
on either the auditory spectrogram (finding 2-D local maxima) or the cortical
representation (finding 4-D local maxima). The algorithm proceeds as follows :
first, all local maxima (on the magnitude of the coefficients) are selected. Then,
they are sorted by decreasing order and only the L largest are kept, L being
related to the desired degree of sparsity. Note that this algorithm is not iterative,
without any optimization procedure, and therefore is very fast.

It should also be noted that, as opposed to the vast majority of sparse de-
composition/analysis algorithms, such as IHT described above, the goal of this
analysis scheme is not to achieve the best approximation (in a least-squares
sense) of the signal for a given number of coefficients. Instead, the rationale
is that, if the representation itself is efficient, the selection mechanism can be
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rather crude: within a zone of the parameters space, local maxima should express
salient features.

3 Psychophysical Experiments

The core idea of the sketches process is to put the listener at the centre of
the design procedure. Thus, as candidate sketches are obtained, they are used
in a perceptual task where a performance measure can be obtained. If a high
performance is observed, then this indicates that the set of features that have
been selected in the sparsification process is sufficient for the task, even though
the sketch itself may sound very different from the original signal.

We now report two experiments using a perceptual task of emotion recogni-
tion. We asked listeners to report whether a short vocal sound expressed happi-
ness, sadness, anger, or disgust. Each emotion was represented by several sound
samples, selected from a calibrated database [11]. The main aim was to provide
a first test of the sketches approach: could listeners perform the task on sounds
that were severely impoverished compared to the original? More precise ques-
tions as to the nature of the sketching process were asked in each experiment.

3.1 Experiment 1: Comparison of Two Auditory Representations

Rationale. Here we wanted to investigate the influence of the basic representa-
tion used to produce sketches. We used auditory models, but contrasted auditory
spectrograms with spectro-temporal “cortical” representations. The robustness
of sketches to the presence or absence of noise was also tested. Indeed, if we as-
sume that the goal of the sketches is to identify perceptually-important features
of sounds, a certain robustness to noise is desirable. Robustness to noise is thus
one indication that the representation is well-suited to the sound class of inter-
est. Finally, the sparsity that can be achieved with the method was evaluated:
a better representation should produce a sparser code.

Material and Methods

Participants. There were 10 participants (6 men and 4 women), aged between 19
and 39 years (M = 25.8 years). All listeners had self-reported normal-hearing.
They all provided informed consent to participate in the study, which was con-
ducted in accordance with the guidelines of the declaration of Helsinki.

Stimuli. All sounds were derived from the Montreal Affective Voices database
[11]. They consisted of recorded nonverbal emotional interjections (on the French
vowel /a/). Among the available stimuli, we selected four emotions that were
easily recognized (see [11]): anger, disgust, happiness, and sadness. Each emo-
tional interjection was uttered by 10 different actors (5 male and 5 female). The
original sounds had very different durations (from 0.4 s to 1.2 s), so we short-
ened some of the stimuli (happiness and sadness, mainly) to avoid recognition
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cues linked to duration. The modified versions of the sounds were still easily rec-
ognized, as confirmed by an informal experiment. The modified sounds had an
average duration of 0.99 s (std= 0.2). A repeated-measures ANOVA performed
on the 40 sounds (4 emotions for the 10 speakers) revealed no significant dif-
ferences between the mean duration of each emotion [F (3, 27) = 0.95; p = 0.4].
These 40 sounds constituted the baseline stimuli.

For the “noise” conditions, pink noise was added to the original sounds, with
a signal-to-noise ratio of -6 dB.

The sketch process was performed either on the original sound or on the noise
version of the sound. In this first experiment, it was only performed using the
PP algorithm. Two auditory representations were compared: the auditory spec-
trogram and the cortical representation (see above). Three degrees of sparsity
were also compared: 10, 100, and 1000 features/second were retained from the
auditory representations. The measure of features/second, which we refer to as
the degree of sketch, is only indirectly related to the quantity of information
retained from the original signal (as for instance it ignores the size and nature
of the dictionnary). However, it serves here as a first approximation of sparsity.

Apparatus. Stimuli were presented through an RME Fireface digital-to-analog
converter at a 16-bit resolution and a 44.1 kHz sample-rate. They were presented
to both ears simultaneously through Sennheiser HD 250 Linear II headphones.
Presentation level was at 70 dB(A), as calibrated with a Bruel & Kjaer (2250)
sound level meter and ear simulator (B&K 4153). Listeners were tested individ-
ually in a double-walled Industrial Acoustics (IAC) sound booth.

Procedure. A 4-AFC (Alternative Forced Choice) paradigm was used. In each
trial, participants heard a single sound, which could be one of the 4 target
emotions. They had to indicate whether the sound they just heard was a repre-
sentative sound of happiness, sadness, anger, and disgust. Visual feedback was
provided after each response.

14 conditions were presented in a randomized fashion to each participant,
for a total of 1120 stimuli in total: original sounds vs. sketches and no noise
vs. noise. For the sketches, we compared the auditory spectrogram vs. cortical
representation and the degree of sketch (10, 100, or 1000 feat/s). The experiment
lasted approximately 1 hour. The experiment was divided into small blocks, to
allow time for breaks.

Results. Results are illustrated on Fig. 4. A first important observation is the
overall good performance, well above the chance level (i.e. 25%), with a mean
percent correct of 93% for the original sounds, and of 55% for the sketches
sounds. A second key result rests upon the comparison of the two auditory mod-
els used to create the sketches: overall, the auditory spectrogram outperformed
the cortical representation. Data were analyzed with a repeated-measures anal-
ysis of variance (ANOVA). We first evaluated the overall difference between
the original sounds and the sketches, in the two noise conditions. A repeated-
measure ANOVA revealed main significant effects for the type of sound (original
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Fig. 4. Results for Experiment 1. Recognition performance of the sketches sounds cor-
responding to two different auditory models (aud spec for the auditory spectrogram,
and cortical model), without (left panel) and with (right panel) noise. Error bars cor-
respond to the standard error of the mean. Performance was overall higher for the au-
ditory spectrogram than for the cortical model. These recognition data for the sketches
sounds are compared to an upper baseline : the average recognition performance for
the original sounds (black line). They are also compared to a lower baseline: the chance
level, i.e. 25% here (dotted gray line).

vs. sketch) [F (1, 8) = 1172.55; p < 0.0001] and for the noise condition (silence
vs. noise) [F (1, 8) = 441.81; p < 0.0001], as well as a significant interaction be-
tween these two variables [F (1, 8) = 21.66; p < 0.005]. These results show that
the overall recognition performance was better for the original sounds than for
the sketches, and that, as expected, noise had a detrimental effect on perfor-
mance; the influence of noise was more pronounced for the sketches than for the
original sounds.

We then analyzed in more details data for the sketches sounds only. We
performed a repeated-measure ANOVA with noise (silence vs. noise), model
(auditory spectrogram vs. cortical), and features (10, 100, and 1000 feat/s) as
within-subjects variables. It revealed main significant effects of noise
[F (1, 8) = 582, 23; p < 0.0001], model [F (1, 8) = 101, 44; p < 0.0001], and features
[F (2, 16) = 138, 01; p < 0.0001]. It also revealed significant interaction between
features and model [F (2, 16) = 89, 80; p < 0.0001], features and noise
[F (1, 8) = 21, 09; p < 0.0001], as well as a significant third-order interaction be-
tween features, model, and noise [F (1, 8) = 37, 81; p < 0.0001]. These results
highlight that: performance was better in silence than in noise; performance
increased as the number of features per second increased; the auditory spectro-
gram model led to better performance than the cortical model (with one notable



Auditory Sketches: Sparse Representations of Sounds 165

exception, that was responsible for the significant third-order interaction: in the
noise condition, for 1000 feat/s, the cortical model led to better performances
than the auditory spectrogram model).

3.2 Experiment 2: Comparison of Two Sparsification Algorithms

Rationale. Experiment 1 served as a first proof of concept of the sketches pro-
cess: the overall recognition performance for sketches sounds was good (55%, i.e.
well above the chance level). This was the case even though the selection algo-
rithm, PP, was extremely crude and did not contain any optimization. Here, we
compare the PP algorithm with a more traditional signal-processing approach,
the IHT algorithm, that minimizes the reconstruction error (see Sect. 2.2).

Material and Methods

Participants. There were 10 participants (5 men and 5 women), aged between
19 and 34 years (M = 23.2 years). All listeners had self-reported normal-hearing.
They all provided informed consent to participate in the study, which was con-
ducted in accordance with the guidelines of the declaration of Helsinki.

Stimuli. Stimuli were very similar to Experiment 1, the only differences here
being that: (i) only the auditory spectrogram was used as an auditory repre-
sentation for the computation of the sketches; (ii) two sparsification algorithms
were used to produce the sketches: IHT and PP (see Subsect. 2.2 for details).

Apparatus and Procedure. The apparatus was the same as in Experiment 1. The
procedure was also very similar. Here, the 12 conditions that were presented in a
randomized fashion to the participant were a combination of 3 parameters: type
of algorithm (IHT vs. PP), noise (with or without), and degree of sketch (10,
100, and 1000 feature/second).

Results. Results of this second experiment are illustrated on Fig. 5. This second
experiment confirms and reproduces some important results of Experiment 1: an
overall good recognition performance, with a mean percent correct of 93% for
the original sounds, and of 60% for the sketches sounds. It also shows that the
PP algorithm generally outperformed the IHT algorithm. Similar analyses as
for the Experiment 1 were conducted. Firstly, the overall ANOVA reproduced
results of Experiment 1: performance was better for the original sounds than
for the sketches [F (1, 9) = 708.77; p < 0.0001]; performance was also better in
silence that in the noise [F (1, 9) = 119.44; p < 0.0001]. For this experiment as
well, the detrimental effect of the noise was more pronounced for the sketches
than for the original sounds [significant interaction between the type of sound
and the noise condition: [F (1, 9) = 12 : 90; p < 0 : 006].
Secondly, a detailed repeated-measures ANOVA on the sketches only re-
vealed that: as expected, performance was better in silence than in noise
[F (1, 9) = 148.98; p < 0.0001]; performance increased as the number of features
per second increased [F (2, 18) = 283.89; p < 0.0001].
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Fig. 5. Results for Experiment 2. Recognition performance of the sketches sounds
corresponding to two different sparsifying algorithms (PP for peak-picking, and IHT
for iterative hard thresholding), without (left panel) and with (right panel) noise. Error
bars correspond to the standard error of the mean. Performance was overall higher for
the PP than for the IHT algorithm. These recognition data for the sketches sounds are
compared to an upper baseline: the average recognition performance for the original
sounds (black line). They are also compared to a lower baseline: the chance level, i.e.
25% here (dotted gray line).

It also showed that performance was overall better for the PP algorithm than
for the IHT algorithm [F (1, 9) = 54.72; p < 0.0001]. All second-order interactions
were also significant:
[features× algorithm : F (2, 18) = 85.92; p < 0.0001.
features× noise : F (2, 18) = 32.39; p < 0.0001.
algorithm× noise : F (1, 9) = 49.46; p < 0.0001]. Finally, the third-order inter-
action was also significant [F (1, 9) = 28.07; p < 0.0001], and highlighted that the
only exception for which the IHT algorithm outperformed the PP algorithm was
in the noise condition, with 1000 feat/s.

4 Discussion

The main aim of this study was to investigate the feasibility of the auditory
sketches idea. From the results, it seems that the sketches design method out-
lined in Fig. 1 has some potential. In the experiments, even though the vast
majority of the parameters was omitted, the perceptual task (emotion recog-
nition for nonverbal interjections) was performed well above chance: sketches
retained some of the relevant information with as little as 10 features/seconds.
More information-theoritic work remains to be done on quantifying the sparsity
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that was actually achieved, because features/second is an imperfect measure, but
the results nevertheless strongly suggest that sparse representations of sounds
based on biologically-motivated models produce perceptually relevant results.

Further observations can be made by comparing the variants we tested for the
sketches process. Perhaps surprisingly, a state-of-the-art sparse decomposition
algorithm minimizing reconstruction error (IHT) did not lead to better results
than a simple peak-picking and thresholding (PP) without any optimization. In
fact, in general, the reverse was true, and PP largely outperformed IHT. These
preliminary results need to be extended with a larger variety of stimuli and per-
ceptual tasks, but still, we can speculate on such an outcome. Because auditory
models are inspired by the physiology of the human hearing system, they may
be particularly relevant as an auditory representation. A simple algorithm like
PP, although not optimal (in the least-square sense for the approximation), may
be enough to capture important features by sampling some of the important
landmarks of the representations.

Fig. 6 illustrates this point, by highlighting an important difference between
the two selection algorithms. The PP algorithm tends to select relatively distant
atoms (see Fig. 6(a)) as an extended high-energy patch in the representation can
be summarized with a single peak. In contrast, the IHT algorithm will attempt
to capture accurately such high-energy patches and will use several atoms to
do so (see Fig. 6(c)). These opposite behaviors lead to different reconstructions:
whereas IHT achieves a highly precise reconstruction of some particular parts of
the original spectrogram (see Fig. 2 and Fig. 6(d)), this is done at the expense
of smaller coverage of the whole parameter space.

However, we should point out that it is probably too early to generalize the
superiority of a local maxima detection over a least-squares approach. The IHT
algorithm constitutes one possible way to solve problem (4) amongst a large
number of possibilities. We chose IHT for implementation and complexity rea-
sons (see Subsect. 2.2) but other algorithms could potentially improve the results
(see e.g., approaches based on a problem relaxation [21,22], or greedy algorithms
[23]). The sparsity-at-analysis point of view can also be questioned, and could be
compared to more standard synthesis approaches. Further experiments could fi-
nally investigate some other sparsifying procedures, intermediate between peak-
picking and energy-maximizing, for instance iterative procedures based on a
time-frequency masking model [24].

Another surprising result is the overall better performance for the auditory
spectrogram representation compared to the cortical one. One of the limitations
of the sounds we used was their short duration (around 1s). The cortical model
contains filters tuned to longer modulations, so it is possible that any potential
benefit of the spectro-temporal analysis only becomes apparent for longer sounds.

Finally, we found that the recognition of sketches was robust to a moderate
amount of noise, but less so than for the original signal. This is in line with many
psychophysical observations showing that degraded signals are more susceptible
to noise. Nevertheless, one hypothesis for the sketches was that sparsification
would lead to some denoising. Our results suggest that either the representations
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Fig. 6. Sparse auditory spectrograms obtained by means of the PP algorithm ((a) and
(b)) and the IHT algorithm ((c) and (d)), directly after the decomposition ((a) and
(c)) and after resynthesis of the audio signal ((b) and (d)). Here, we keep 100 feat./s.
AU: arbitrary units, log scale.

failed at this goal, or that, more likely, the selection procedure could be improved.
Such an approach has proven successful for denoising of speech signals, with the
cortical model [25]: by increasing the dimensionality of the representation, noise
and signal get mapped into different parts of the parameter space.

5 Perspectives

This preliminary study already shows that only a few features extracted from an
auditory-based representation can produce a sound with recognizable perceptual
traits. Even though the resulting sketch may be highly distorted compared to
the original, under certain constraints, the selected features can be sufficient for
recognition of complex properties such as emotional content. Obviously, more
work remains to be done on each stage of the sketching process, and in particular,
the iterative nature of the algorithm needs to be put to the test.

In addition, a few ideas emerge on how sound features should be combined in
order to build recognizable auditory sketches. For a task of sound recognition,
it seems that it is more important to have some cues on how energy is spread in
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the time-frequency plane, rather than a precise description of the most energetic
components. Interestingly, this is similar to what is being done in state-of-the-
art audio fingerprinting techniques, that choose salient points as local maxima
in large blocks on the time-frequency plane. More precisely, it seems that the
right way to select atoms is not purely based on energy criteria, but also their
information content: we need to select a set of atoms that carry energy but also
whose mutual information is minimal. In other words, we shift from the standard
paradigm of sparsity justified by Occam’s razor (amongst 2 explanations, prefer
the one that is simplest) to an “informed” version (amongst 2 explanations,
prefer the one that brings you more information on top of a prior model). This
brings us close to the original sketches metaphor: to sketch a visual object, an
artist will usually not attempt photographic realism. Rather, in a few pencil
lines, an attempt will be made to capture what makes this object unique. It is
our hypothesis that such an approach may have interesting implications for signal
processing, but also for understanding how human listeners perform recognition
tasks (see e.g. [26]).
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16. Drémeau, A., Herzet, C., Daudet, L.: Boltzmann machine and mean-field approx-
imation for structured sparse decompositions. IEEE Trans. on Signal Process-
ing 60(7), 3425–3438 (2012)

17. Elad, M., Milanfar, P., Rubinstein, R.: Analysis versus synthesis in signal priors.
Inverse problems 23(3), 947–968 (2007)

18. Blumensath, T., Davies, M.E.: Iterative thresholding for sparse approximations.
Journal of Fourier Analysis and Applications 14(5-6), 629–654 (2008)

19. Hoogenboom, R., Lew, M.: Face detection using local maxima. In: Proc. Int’l Con-
ference on Automatic Face and Gesture Recognition, 334–339 (1996)

20. Schwartzman, A., Gavrilov, Y., Adler, R.J.: Multiple testing of local maxima for
detection of peaks in 1d. Annals of Statistics 39(6), 3290–3319 (2011)

21. Chambolle, A.: An algorithm for total variation minimization and application.
Journal of Mathematical Imaging and Vision 20(1-2), 89–97 (2004)
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