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Abstract—Although of proven interest for decomposition algorithms,
structures in sparse representations are rarely known in practice. In
this work, we propose to model structures through so-called restricted
Boltzmann machines, for which efficient learning algorithms exist. The
model is then exploited into a variational Bayesian procedure. The
approach is shown to present a good behavior with regard to its non-
structured counterpart.

Index Terms—Structured sparse representations, restricted Boltzmann
machine, variational Bayesian approximations

I. INTRODUCTION

Taking into account the structures naturally living in signal rep-
resentations has proved to be relevant for the performance of the
sparse decomposition algorithms (e.g. [1], [2]). Within this context,
we proposed and developed in [3] a generic Bayesian algorithm,
exploiting a Boltzmann machine (BM) (also considered in [4], [5],
[6]) to model various types of structures. Formally, considering the
observation model y =

∑M
i=1 si xi di +n, the support s ∈ {0, 1}M

is assumed to obey

p(s) ∝ exp(bT s + sTWs), (1)

while we classically moreover suppose n ∼ N (0, σ2
nIN ) and xi ∼

N (0, σ2
xi

), ∀i ∈ {1, . . . ,M}. BM encompasses many well-known
probabilistic models as particular cases and offers then a nice option
for a wide range of dictionaries and classes of signals. However the
learning of its parameters is a difficult problem, which largely limits
its practical use (structures, and thus parameters, are rarely known).

Inspired by recent works in neural networks, we propose here to
replace model (1) by a so-called “restricted” BM (RBM) as

p(s) =
∑

h
p(s,h) ∝

∑
h

exp(aTh + bT s + sTWh), (2)

where h is a L-dimensional binary hidden variable. The RBM is
the building block of “deep belief networks” [7] and has recently
sparked a surge of interest partly because of the efficient algorithms
developed to train it (as the Contrastive Divergence (CD) [8]).

II. DEEP STRUCTURED SOBAP

Based on this model, we consider the following marginalized
Maximum A Posteriori (MAP) estimation problem

ŝ = argmax
s∈{0,1}M

log p(s|y), (3)

where p(s|y) =
∫
x
p(x, s|y)dx. To solve this problem, different

sub-optimal techniques can be used. In the continuation of previ-
ous works [3], [9], [10], we are interested here in the solutions
brought by variational approaches, which aim to approximate the
posterior distribution p(x, s|y) by a distribution q(x, s) leading to
the minimum of the Kullback-Leibler divergence under specific sets
of constraints. In particular, considering the factorization constraint
q(x, s) =

∏M
i=1 q(xi, si) =

∏M
i=1 q(xi|si) q(si), we focus on a

mean-field (MF) approximation, which can be in practice efficiently

solved by an iterative algorithm, called “variational Bayes EM
algorithm” [11]. Particularized to our model, the method gives rise
to the following updates:

q(xi|si)=N(m(si),Σ(si)), q(si)∝
√

Σ(si) exp

(
1

2

m(si)
2

Σ(si)

)
p̃(si),

where Σ(si)=
σ2
xi
σ2
n

σ2
n+siσ2

xi
dT
i di

, m(si)=si
σ2
xi

σ2
n+siσ2

xi
dT
i di
〈ri〉Tdi,

〈ri〉=y −
∑

j 6=i
q(sj = 1) m(sj = 1)dj ,

p̃(si)∝exp(bisi)
∏L

l=1
(1 + exp(al + siwli +

∑
j 6=i
q(sj=1) wlj)).

The procedure presents a complexity O(M2) per iteration, similar to
the one of the approach proposed in [3]. Furthermore, it is of a more
practical interest when the structures have to be learned. The use of
RBMs being a natural bridge towards deep networks, we will refer
to the proposed procedure as the “Deep Structured Soft Bayesian
Pursuit” (DSSoBaP).

III. PROOF OF CONCEPT

To illustrate this advantage, we consider the MNIST database
[12], widely used in the field of machine learning. The database
is composed by 60000 training and 10000 testing handwritten
digits, labelled from 0 to 9, in grayscale levels and of dimension
M = 28 × 28. The images are sparse, with K = 150 non-zero
coefficients on average. The experimental procedure is as follows.
We first train the RBM parameters on the sole supports of the
training set, using Constrative Divergence [8] and setting L = 10.
100 images (10 per label) are then extracted from the testing set
and reconstructed through a compressed sensing framework using a
normalized zero-mean Gaussian sensing matrix D. We evaluate the
performance of DSSoBaP, and the one of its unstructured, Bernoulli-
based counterpart SoBaP [3], in terms of the normalized mean-
squared error (MSE) in function of the number of measurements
N . Two different setups are then considered: σ2

n = 0 for Fig. 1 and
σ2
n = 0.01 for Fig. 2. We can see here that DSSoBaP outperforms

SoBaP, illustrating, to the extent of these experiments, the interest of
exploiting structures through RBMs.

IV. CONCLUSION

In this paper, we have shown that RBMs can favorably be used
to model (unknown) structures in sparse representations. As a proof
of concept, its exploitation through a variational MF approximation
leads to a promising approach. Future work should also investigate the
strengths of such deep prior models with regard to the characterization
of the structures.
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Fig. 1. Mean-squared error as a function of the number of measurements
N (x-axis is N/M with M = 784) in the noiseless case.
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Fig. 2. Mean-squared error as a function of the number of measurements
N (x-axis is N/M with M = 784) in the noisy case (σ2

n = 0.01).


