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ABSTRACT variational Bayesian EM algorithm in Sectigh 3, before particulariz-
] ) ) ) _ing it to the HR-NMF model in Sectionl 4. Sectibh 5 is devoted to
We recently introduced the high-resolution nonnegative mat”xexperimental results, and conclusions are drawn in Section 6.

factorization (HR-NMF) model for analyzing mixtures of non- The following notation will be used throughout the paper:
stationary signals in the time-frequency domain, and highlighted

its capability to both reach high spectral resolution and reconstruct
high quality audio signals. In order to estimate the model pa-
rameters and the latent components, we proposed to resort to an
expectation-maximization (EM) algorithm based on a Kalman fil-
ter/smoother. The approach proved to be appropriate for modeling C. . .
audio signals in applications such as source separation and audio ® = equa!lty uptoan add.ltlve cqnstant, ]

inpainting. However, its computational cost is high, dominated by ~ ® h * m: discrete convolution of times seriésandm,

the Kalman filter/smoother, and may be prohibitive when dealing e Np(u, R): real (if F = R) or circular complex (iff = C)
with high-dimensional signals. In this paper, we consider two dif- multivariate normal distribution of meap and covariance
ferent alternatives, using the variational Bayesian EM algorithm and matrix R.

two mean-field approximations. We show that, while significantly

reducing the complexity of the estimation, these novel approaches » HR-NMF TIME-FREQUENCY MIXTURE MODEL
do not alter its quality.

Index Terms— Nonnegative Matrix Factorization, High Res- 1"€ HR-NMF mixture model of TF data(f,t) € F (whereF = R

olution methods, Expectation-Maximization algorithm, Variational ©" C) is defined for all discrete frequenciés< f < F” and times
inference. 1 <t < T as the sum of< latent components,(f,t) € F plus a

white noisen(f, ) ~ Nz(0,0?):

M™: conjugate of matrix (or vector)V/,
M transpose of matrix (or vectoR,
M*H: conjugate transpose of matrix (or vectdr},

L]
L]
L]
e [M; NJ: vertical concatenation a4 and N,

1. INTRODUCTION a
o(f,t) =n(f,t) + > crlfot) (1)
Nonnegative matrix factorization (NMFL][1] is a powerful tool k=1
for decomposing mixtures of non-stationary signals in the timeyynere

frequency (TF) domain. However, unlike the high resolution (HR) Pk 1)

methods[[2] dedicated to mixtures of complex exponentials, its spec- o ¢, (f,t) = 5. a(p,k, f) cx(f,t — p) + bi(f,t) is ob-

tral resolution is limited by that of the underlying TF representation. _ p=1 o _ _
Following previous works which aimed at providing a probabilistic tained by autoregressive filtering of a non-stationary signal
framework for NMF [356], we introduced in 7] 8] a unified proba- bi(f,t) € F (wherea(p, k, f) € FandP(k, f) € Nis such
bilistic model called HR-NMF, that permits to overcome this limit thata(P(k, f), k, ) # 0),

by taking both phases and local correlations in each frequency band e by(f,t) ~ N (0, vx(f,t)) wherevy(f,t) is defined as
into account. It can be used with both complex-valued and real-
valued TF representations (like the short-time Fourier transform or ve(f,t) = w(k, f) h(k,1), )
the modified discrete cosine transform). Moreover, we showed that .
HR-NMF generalizes some very popular models: the Itakura-Saito with w(k, f) > 0 andh(k,t) > 0, .
NMF model (IS-NMF) [6], autoregressive (AR) processes, amd th ~ ® Processes andb; ... bx are mutually independent.
exponential sinusoidal model (ESM), commonly used in HR spec- Moreover,V(k, f) € {1...K} x {1...F}, the random vec-
tral analysis of time serie§][2]. In][7, 8], HR-NMF was estimatedtors cx(f,0) = [ck(f,0);...;¢ex(f, —P(k, f) + 1)] are assumed
with the expectation-maximization (EM) algorithm, which involves to be independent and distributed according to the prior distribution
time-demanding Kalman filtering and smoothing. In this paper, wecy (f,0) ~ Ne(pr(f), Qx(f)™"), where the meap, (f) and the
introduce two faster algorithms based on variational inference, angrecision matrixQx(f) are fixed parametdts Lastly, we assume
compare the performance of the three algorithms. thatvf € {1...F},Vt <0, z(f,t) is unobserved.

This paper is organized as follows. In Secfidn 2, we present the Letcdenote the sefick (f, 1)} (x,7,¢), v denote the seftz(f, )} 1.4
HR-NMF model, as introduced if][7]. We recall the basics of theandd the set of model parameters, {a(p, k, f)} .k 1)s {0k, )}k, p)

This work is supported by the French National Research AgéhNR) in practice we choosgu(f) = [0;...;0]T andQu(f)~t = €I,
as a part of the DReaM project (ANR-09-CORD-006-03) andlypatp- where [ is the identity matrix and is small relative to 1, in order to both
ported by the Quaero Program, funded by OSEO. enforce the causality of the latent components and avoidiEinghatrices.



and{h(k,t)} ). Considering mode[{1), we focus on the maxi- 4. VARIATIONAL BAYESIAN EM FOR HR-NMF
mum a posteriori (MAP) estimation of the latent components

where the model parameters are estimated according to a maximum
likelihood (ML) criterion

. o Considering the HR-NMF model defined g (¥)k, f) € {1... K}x
¢ *argmaXp(dx’g ), ®) {1...F}, leteys denote the sefick (f, 1) }req— p(k.f)+1...1) - More-
over, leta = 1if F = C, anda = 2 if F = R. Then

K F
0" = argrgnaxp(x :0). (4) aln(p(c,z)) = O‘gl f2::1 In(p(cxy))

The solution of [B){4) can be found by means of an EM algo- +¢ Z Z 6(f,t) In(p(z(f, O)]er(f,t) - .. cx(f,1)))

filter/smoother, and may be prohibitive when dealing with large di-

f=1t=

rithm. We proposed in[7.8] an efficient implementation, using a K
Kalman filter/smoother in the E-step. However, the computational — — [ KFT + S S P(k, f) | In(ar)
cost remains high, dominated by the complexity of the Kalman k=1 f=1

K F
mensions. We propose here an alternative, based oratiational k; f;(ck(f’ 0) = 1k (F)" Qu(f)(er(f,0) = mi(f))
Bayesian EMVB-EM) algorithm, which uses a mean-field approx- K F
imation of the posteriop(c|z;6*) to reach a good compromise + >_ > <1n(det(Qk( )+ Z In(pk(f,t) )
between quality and complexity of the MAP estimatibh (3). k=1f=1 Py )
K F T s
_Z Z pk(f7t) Ck(f,t)— Z ( 7k7f)ck(f7t_ )
3. VARIATIONAL BAYESIAN EM ALGORITHM k=1 f=1t=1 p=1
F T K 2
Variational inference[9,10] is now a classical approach for estimat- — >~ > (f,t) <1n(a7m2) + 25 [x(f, 1) = X en(fit)
ing a probabilistic model involving both observed variahteand f=1t=1 k=1
latent variables:, parametrized by. Let 7 be a set of proba- h (1)
bility density functions (PDF) over the latent variablesFor any ~ WN€'€
PDF¢ € F and any functionf(c), we note(f), = [ f(c)q(c)de. e §(f,t) = 1if x=(f,¢) is observed, and(f,t) = 0 else (in
Then for any PDR; € F and any parametél, the log-likelihood particularé(f, t) =0Vi < 1andvt > T),
L(6) = In(p(x;0)) can be decomposed as o or(fit) = - (f Sifte {1...TY}, andpi(f, ) = 0 else.

L(9) = Dx(qllp(clz; ) + £(g; 0) ®) In the following subsections, we will first recall the EM-based
o q(c) algorithm presented in [7] 8] as a particular case of the variational
where D (dllp(cz: 6)) = <ln (p(0|93; 0))>q ©) procedure[(P)E(T0) (Sectiofs #.1 dndl4.2) and then propose two dif
ferent alternatives to this costly approach, based on two mean-field

is theKullback-Leibler divergencbetweeny andp(c|z; ), and approximationsj.e. two different definitions ofF (Sectiond 413
ple, x;0) and[4.%). These three algorithms only differ in the E-step, but they
L(g;0) = <1 (W)> (") share the same implementation of the M-step.
q

is called thevariational free energy Moreover,L(g; 0) can be fur- 4 ¢ M-step
ther decomposed a¥(¢; ) = E(q;0) + H(q), where

of the posterior distributiop(c|z; 6;—1). We note that:

The M-step defined in equatidn{10) consists in maximizir{g*; 6)

E(g;0) = (In (p(c, 2;0))), , ) 1t the model parametefs First, equation{{8) anf{l1) yield
andH(q) = —(In(q(c))), is the entropy of distributiog. Since R
Dx (qllp(c|z;0)) > 0, L(g; 0) is alower bound of.(6). The varia- aF(q*;0) £_ SO S0 6(f, 1) In(ama®) + e(f,t) /o>
tional Bayesian EM algorithm is a recursive algorithm for estimating f=1t=1 .
6. It consists of the two following steps at each iteration KEZ a(k, f)"S(k, f,t)a(k, f)

— In(w(k, f)h(k,t)) + ,
e E-step (update): kgl fgl t; (wik, Nk, 8)) w(k, f)h(k,t)
12)

q" = argmin D (q|[p(clx; 0i-1)) = argmax £(g; 0i—1)
qEF qEF

9) K 2
e M-step (update): o e(f,t) =0(f,t) < z(f,t) — J§1 cr(f,t) > ,
O = anepa £l0) =argpax Blai). - (40 Sk, £,6) = (@) Tl £, ) Do,
F defines a set of constraints leading to a particular approximation e ¢x(f,t) = [ck(f,t);...;cu(f,t — P(k, f))],

a(k7f) = [1; 7&(1,k,f); B 7G‘(P(k7f)7k7f)]'

e In the standard EM algorithmg is not constrained, thus We note that( f, £) andS(k, f, ¢) can be computed as

q* = p(c|z;0;—1) and Dk (¢*||p(c|x; 0:-1)) = 0. There-

fore L(GI) > L(q*,@l) > E(q*;@i_l) = L(Qi—l)y which K 2 K

proves that the log-likelihood is non-decreasing. o e(fit) =0(f,t) | |=(ft) - kgl mi(f,1)] + kgl w(f.1) ],
e In the general caseL(6) is no longer guaranteed to be . o o -

non-decreasing, but its lower boung(q; ¢) is still non- o S(k,f,t) = Ri(f,t)" + mu(f, t)" mi(f,t) ",

decreasing. where we have defined:



mi(f,t) = {ck(f,t))gr, The complexity of this procedure ®(FTK (1 + P)?) instead of

_ _ 2y O(FTK?*(1 4 P)?) for the "classical" E-step.
L(£,8) = (Jex(f,8) = mu (£, ) In order to evaluate this algorithm, we are also interested in com-
my(f,t) = (€k(f,t))q, puting the variational free energ§; After some straightforward cal-

Ri(f,t) = (@ (f,t) — n(fs 1)) (@l f, ) — e/, t))H>q*. culations, we note that the entrop§/(qx s ) satisfies

The maximization ofZ(¢*; 0) in equation[(IR), w.r.to?, a(p, k, f), aH(qep) = (T + P(k, f)) (ln(om) +1)

w(k, f), andh(k,t), can then be performed as in the M-step pre- I - (16)
sented in[[8], using the current estimationgwf, (f, ¢) and Ry (f, t) + len(det(Rk(f’ M - Z In(det(Re(f, 1)),

derived from the E-steps as presented in the next sections.

where Ry (f,t) is the P(k, f) x P(k, f) top-left submatrix of

Ry (f,t). Thus equation ar[d{16) yield
4.2. E-stepinthe exact EM algorithm k(f:1) d n&l7401) ardli6) y

KFT+ 5 5 Pk, f) — trace(Qu(f)Ri(f,0))

As mentioned in Sectidd 3, in the exact EM algorithris not con- al(q;0) =
strained, thus the solution dfl(9) is given by = p(c|x;6), and . r k=1 f=1
the variational free energg(q*, 0;) is equal to the log-likelihood _ _ H _
L(6;). In [78], we showed that the posterior distributipfe|; 6) &2, 2 me (5.0 = (D)7 Qu(F)(ma (7, 0) = (1))
is Gaussian, and that its first and second order moments, as well as X F T
the value ofL(6;), can be computed by means of Kalman filtering ;;1 fZ:l In(det(Qx(f))) + t; n(pr(f,1))
and smoothing. The resulting E-step can symbolically be writtenas: x "r
for 1< f < Fdo = > > > pe(fit)alk, /)T S(k, f,t)alk, f)

S
Il
-

<
Il
-
~
Il
=

{m(f,1), Re(f, Dz = Kalman ({2(f, ) h<i<r)

o(f,t) h’l(Oﬂl’O'Q) +e(f, t)/a2

|
M=
M=

end for

Its computational complexity was shown to®¢FT K> (1 + P)?),
whereP = max P(k, f).

<
Il
-
o~
Il
-

In(et(Re(£.0)) ~ % n(det(Ra(£,1)

17)
wherem(f,0) is the P(k, f) x 1 top subvector ofrz,(f,0).

>
Il
-

-
Il
=

_|_
M=
M=
A~
M=

<
Il
—

4.3. E-step with structured mean field approximation

If K > 1, we assume thaf, introduced in Sectiofl3, is the set of 4.4. E-step with mean field approximation
PDFs which can be factorized in the form

q(c) = H H qrs(chr)- (13)
k=1 f=1

Using this particular factorization fay(c), the solution of[(B) satis-
fies (seel[B])v(k, f) € {1... K} x {1... F'}, With this particular factorization of(c), the solution of[[P) satisfies
(seel®N:V(k, f,t)e{l... K}x{1... F}x{—P(k, f)+1...T},

If P > 0, we further assume that is the set of PDFs which can be
factorized in the form

o=1] H 11 arre(cr(f,1))- (18)

1f=1t=—(P(k,f)—1)

. a4 .
L) iac1,0) o)

Then, reformulating equatiof{11) and using equafiah (14), we get
Let us define the filter of impulse resporisg:, such thati, s (0)=

In(qes (eis)) = (In(p(e, z)))
( (19)

IT ngu>
(Lg,u)#(k, f,t)

c ) X ) L hef(p) = —a(p,k, f) Vp € {1...P(k, f)}, and his(p) =
aln(p(c,z))= aln(p(ckr)) Z |Ck ft) =0, 0 everywhere else, and the filtér,s(p) = his(—p)*. Af-
t=1 (15) ter some straightforward calculations, equatiops] (11) (19)

o _ . yield V(k, f,t) € {1...K}x{1...F}x{—=P(k,f)+1...T},
with ¢, (f,t) = =(f,t) l;c my(f,t). We observe thajy is the arre(en(F20)) ~ Ne (ma(F, 1), T (f.4)) , wher@
posterior distribution of a HR-NMF model of ordéf = 1, where .
the posterior means of all components other thdrave been sub- Tu(f,t) = (5(f, t) 4 ar(F,0) + [Pos % i (F t))

tracted to the observed datéf, t). Hencegy is Gaussian, and its ’ o? ’ ’

first and second moments can be computed by applying the Kalm .

filter/smoother presented inl[7, 8] & (f, t) instead ofz(f, t). The %‘"th 4 (f,t) = Qu(f)a-t1-0 if =P(k,f) +1 <t < 0and
resulting E-step can symbolically be written as: k(f,t) = 0 else), and

for1 < f<Fdo

for 1 <k < Kdo mi(f,t) =mi(f,t) + Te(f, )( ax(f, )" (mi(f,0) — pr(f))
< 4 < A _ K

VLSt T e(ft) = (f1) = 3 malf 1) +2UD ((f,t) — X mu(f,6) - hues * (pr(f, )(hkf*mk(f,t))))
{mi(f,t), Re(f.t) hh<i<r = Kalman({éx(f, t) hr<i<7) - _

end for 2|h,€f|2 denotes the filter whose coefficients are the square magrofude

end for the corresponding coefficients bf, ;.
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The VB-EM algorithm aims to maximize the free energy. As we
mentioned in Sectionl 3, the log-likelihood is thus no longer guaran-
Feed toincrease, V.Vh'le remaining an |nd|catqr ofthe estimation qual'T'wo important observations can be made about Figlire 2. As previ-
ity. It can then be interesting to evaluate the influence of the approxs v noticed in7B], IS-NMF (in black dash-dotted lines), which
imations [IB) and(18) on the maximization of the log-likelihood. To. Y ’ '

this end, we consider a fully observed TF datg, ¢) generated ac- involves Wiener filtering, is not able to properly separate the com-
cording ’to modellL) with' =20, F—3, P(k f)7:3 V(k, ) and ponents when they overlap. As a comparison, the components es-

K =2 (and random parametef, and compare the performance of timated by HR-NMF (blue dashed lines and magenda dotted lines)
the three algorithms described respectively in Subseckion$ 412, 4boetter fit the ground truth. We see on this example that the EM-

andZ2 with regard to the maximization of the log-likelihood. Fig- based and VB-EM-based approaches lead to very similar results: the

I ) ; separated components are often merged. More precisely, we mea-
ure[d presents the value of the log-likelihood at each iteration of th%ured an averaged mean squared error of 0.0161 for IS-NKIF16.
. > nte 10361 the VBEM-based HR-NMF and 0.0006 for the EM-based HR-
ing on the maximization of the free energy, the VB-EM algorithm -

. . S . MF on the whole set of frequencies and components reconstructed
permits here to increase the log-likelihood, whatever the considered.., . = . - . . !

- ) : " within this experiment. The slight quality loss due to the mean-field

approximation (mean-field or structured mean-field). In addition, as

N ) . approximation is largely compensated by a significant computation
|ntU|t|ver expected, the most poqstralned factorlze} (18) IeadsF Ime saving: with a 2.20GHz CPU processor and 8Go RAM, the
a lesser increase of the log-likelihood. In practice however, thl%PU time required to run the E-step in the exact EM aoproach with
expected quality loss is not tangible. As an example of the good be~ > e o P : pp
havior of the VB-EM approach, we focus here on a simple case of Matlab implementation is 19.5s, while 1.9s is enough for the E-step
. ’ oo with mean-field approximation.
source separation, where the observation is the whole STF)
(of dimensionsF' =400 andT =44) of a 1.05 s-long piano sound
sampled at 1025 Hz, containing three notes, C3, C4 and C5, start-
ing respectively ab ms, 260 ms and525 ms, and lasting until the
end of the sound. Within this scenario, we aim at separdting3 ) ) . )
components:, (f, t) of order P(k, f) =2 in the frequency bangt This paper introduces two novel methods as alternatives to estimate
which corresponds to the first harmonic of C5, the second harmonie HR-NMF modelintroduced ia[7,8]. These methods are based on
of C4 and the fourth harmonic of C3 (around0 Hz). These three the variational Bayesian EM algorithm and two different mean-field
sinusoidal components (whose real parts are represented agided s@Pproximations. Their low complexities allow using the HR-NMF
lines in FigurdR) have very close frequencies, making them hardiynodel in high-dimensional problems without altering the good qual-
separable. We Compare then three different approachesl name||v Of the estimation. We |”Ustrated these gOOd pl’Opel’tIeS Wlth asim-
the HR-NMF model estimated by means of the EM algorithm, theble example of source separation. In future work, we will investigate
HR-NMF model estimated by means of the VB-EM algorithm us-Other kinds of structured and unstructured mean field approxima-

ing the mean-field approximatiof{18) and the IS-NMF mof&l [6].tions, as well as a fully Bayesian approach involving uninformative
or informative priors for the various model parameters. We will also

3In this equation, although the termy (¢) appears several times in the apply variational inference to the future extensions of the HR-NMF
right-hand side, it can be easily verified that its contiitig add up to zero.  model €.g.involving convolutive and multichannel mixtures).

Fig. 2. Separation of three sinusoidal components.

6. CONCLUSIONS
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