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ABSTRACT

This paper proposes a new compression algorithm based on multi-scale learned bases. We first explain the
construction of a set of image bases using a bintree segmentation and the optimization procedure used to select
the image basis from this set. We then present the sparse orthonormal transforms introduced by Sezer et al.1

and propose some extensions tending to improve the convergence of the learning algorithm on the one hand and
to adapt the transforms to the coding scheme used on the other hand. Comparisons in terms of rate-distortion
performance are finally made with the current compression standards JPEG and JPEG2000.
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1. INTRODUCTION

Recent results in image compression tend to show that adaptation of the transform to the local characteristics
of the image allows a gain in performance. In practice, the optimization of the transform to the image charac-
teristics can mainly be made at two levels: i) in the spatial domain by adapting the support of the transform;
ii) in the transformed domain by adapting the atoms of the projection basis to the signal characteristics we
want to describe.

Several contributions considering these general approaches can be found in the literature. Chen2 suggests
to use the DCT on blocks of variable size. Meyer3 compares different lapped DCT transforms. At the same
time, a number of new transform bases have emerged. The DCT in the JPEG scheme is so replaced by other
transforms, better adapted to the local statistics of each block.4 A similar idea is followed by Sezer et al.1

where a library of bases is optimized on a training set to maximize the sparsity of the transform vectors. We
can likewise refer to the well-known wavelets,5 curvelets,6 contourlets7 and bandelets,8 which are very effective
at describing the edges of an image. Finally, a hybrid approach is also studied,9 optimizing both the size of the
blocks and the direction of a bandelet basis.

In this paper, we study an image compression method based on a different hybrid approach: the transform
basis is selected (in a rate-distortion sense) in a set of bases made up of the concatenation of local multi-
scale anisotropic (rectangular) bases. The libraries of local bases are optimized in a sparsity-distortion sense
following a slightly different procedure than the one presented in Sezer et al.1 In particular, we propose another
initialization of the algorithm and another norm for the sparse optimization problem. We investigate also the
integration of the knowledge of the quantizer used in the compression codec in the basis optimization procedure.

2. MULTI-SCALE BASES FOR IMAGE COMPRESSION

In this section, we first briefly recall the theoretical arguments which motivate the use of a set of bases matched to
the local properties of an image. Then, we consider the construction of a set of image bases as the concatenation
of local anisotropic bases. We finally present the optimization procedure we use to select the image basis.
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2.1 Low bit rate compression and sparsity

We consider a compression scheme using an orthonormal basis B = {bk}Nk=1 and a quantizer Q. An image
block f of N pixels is then approximated by f̂ as

f̂ =
N∑
k=1

Q(〈f ,bk〉)bk (1)

where 〈f ,bk〉 denotes the scalar product between vector f and bk and Q(〈f ,bk〉) denotes the nearest value of
〈f ,bk〉 among the set of quantized points.

In that context, Mallat and Falzon10 show that the number of nonzero quantized transform coefficients (i.e.,
scalar products), say M , plays a crucial role in the characterization of the rate-distortion performance at low
bit rates. On the one hand, they emphasize that the distortion D can be linked to the number of nonzero
coefficients M via a function ϕ(M) which modelizes the ability of the basis to approximate a signal with M
projection coefficients, i.e.,

D = ϕ(M). (2)

On the other hand, they show that the rate required to represent the quantized coefficients is proportional to
M , i.e.,

R = γM. (3)

As a consequence, Mallat and Falzon’s work leads to the following observation: at low bit rates, the rate-
distortion performance depends on the ability of the basis to provide a good approximation of the signal with
few coefficients.

In practice, different bases are often well-suited to different kinds of images. This suggests that enhanced
rate-distortion performance could be achieved by adapting the projection basis to the image to compress. As
mentioned in the introduction, we consider here a compression algorithm which selects the best basis (in a
rate-distortion sense) among a set of bases built as the concatenation of anisotropic multiscale local “sparse”
bases. We explain the construction of this set of bases and the optimization procedure used to select the image
basis in the remainder of this section.

2.2 Bintree concatenation of local bases

A common way to form an image basis from local bases is to use a quadtree. This method leads to a set of bases
which are the concatenation of square local bases whose support sizes can possibly be different (see Le Pennec
et Mallat9 for example). In this paper, we want to exploit anisotropic (rectangular) local basis supports. This
is achieved by the use of a bintree.

With this additional degree of freedom, a bintree segmentation increases the number of possible image bases.
On the one hand, we can intuitively assume that the more bases we have at our disposal, the more likely we
are to select a basis which properly catches the local properties of the image. On the other hand, this leads to
an increase of the bit rate since the choice of the selected basis has to be transmitted.

Therefore, in addition to the bit rate required to code the transform coefficients (expressed in (3) and noted
Rc here), we have to take into account the encoding cost of the image basis, i.e., the cost associated to the
encoding of the tree specifying the local basis supports (noted Rs), and the cost associated to the encoding of
the local basis indices (noted Rm). The total bit rate can then be expressed as:

R = Rc +Rs +Rm. (4)

In the next section we will discuss how to select the basis which leads to the best compromise in terms of
rate-distortion. The use of a bintree instead of a quadtree increases Rs but we can observe experimentally that
this is compensated by a better local adaptivity, resulting in a gain in performance.



2.3 Basis selection in a rate-distortion sense

In the transform coding paradigm, two parameters can impact the rate-distortion performance: the transform
basis and the quantization of the transform coefficients. Therefore, the rate-distortion optimization problem
can be formalized as follows:

(B?,Q?) = arg min
B,Q

D(B,Q) subject to R(B,Q) ≤ Rt, (5)

where B (resp. Q) is a trial image basis (resp. quantizer) and Rt is a target rate we specify as a constraint.

Solving (5) is usually quite cumbersome. Instead, Shoham and Gersho11 introduced the following simplified
unconstrained problem:

(B?
λ,Q?λ) = arg min

B,Q
D(B,Q) + λR(B,Q), (6)

where λ is a Lagrangian multiplier. They showed that if R(B?
λ,Q?λ) = Rt, then (B?

λ,Q?λ) is also a solution of
the initial optimization problem (5).

This condition is unfortunately not always satisfied in practice. However, the approach proposed by Shoham
and Gersho has been shown to lead to good performance in many contributions and will therefore be considered
hereafter.

In our compression scheme, we consider a uniform scalar quantizer with a quantization step ∆ and a deadzone
equal to 2∆. Optimizing Q is then equivalent to optimizing ∆. In this context, Le Pennec and Mallat9 proved
that, as long as assumption (3) is valid, the optimal quantization step, say ∆?

λ, is related to λ as follows:

∆?
λ =

√
4 γ λ

3
. (7)

With this result, problem (6) reduces to optimizing the rate-distortion function with respect to basis B, i.e.,

B?
λ = arg min

B
D(B,∆?

λ) + λR(B,∆?
λ). (8)

The solution of this problem can be found efficiently using dynamic programming12 provided that: i) the set
of image bases is the “tree” concatenation of local bases; ii) the distortion and the rate can be decomposed into
local terms associated to each local basis. The first condition is obviously satisfied by our set of image bases,
see section 2.2. The second one requires some additional coding assumptions.

First, we adopt a simple implementation of the bintree by assigning “1” to internal nodes and “0” to leaf
nodes. Hence, Rs can be expressed as the sum of the bit rates required to code each tree leaf, say Rls, i.e.,

Rs =
∑
l∈L

Rls, (9)

where L is the set of tree leaves.

Second, we assume that the choice of the local basis indices is encoded by a fixed-length code (FLC). Hence,
denoting by L the length of the FLC code, we have

Rm =
∑
l∈L

Rlm,

= |L|L, (10)

where |L| is the cardinal of L. Note that the use of a FLC is in general quite suboptimal. This choice is made
here only for complexity purpose since it allows to decompose Rm as a sum of local terms. In section 4, we will
describe a more efficient way to encode the local basis indices. Here, (10) can therefore be seen as an upper
bound on the rate which can actually be achieved by our practical scheme.



Finally, the rate required to encode the transform coefficients, Rc, can readily be expressed as a sum of local
terms by using assumption (3). Mallat and Falzon evaluate experimentally γ at 5.5 for the DCT basis and 6.5
for the wavelet basis. For the sparse learned bases, we estimate∗ Rc = 6.5 M as a good approximation of the
rate required to encode the transform coefficients.

Summarizing these observations, we finally obtain that the overall rate can be decomposed as a sum of
“local” rates, i.e., R =

∑
l∈LR

l with Rl = Rlc + Rls + Rlm. Standard dynamic programming methods12 can
therefore be applied to solve (8).

3. SPARSE LEARNED BASES

The procedure described above leads to the selection of an image basis made up of the bintree concatenation
of local block bases. At each node of the bintree, the choice of the local basis is made over a set Blocal. The
construction of this set is crucial for the performance achievable by the compression scheme. We follow here
an approach similar to the one proposed by Sezer et al.1 for the optimization of a set of orthogonal bases in a
sparsity-distortion sense.

3.1 Sezer’s algorithm

Let {f j}Lj=1 be a set of image blocks of same dimension, say N , and let Blocal = {B1, . . . ,BK} be a set of K
local orthogonal bases to optimize. Each basis is optimized from a subset of the training blocks {f j}Lj=1. More
particularly, let Si be the set of indices of the blocks involved in the optimization of Bi. Similarly to the rate-
distortion optimization exposed in the previous section, the optimization of the K bases in a sparsity-distortion
sense can be written as an unconstrained problem depending on a Lagrangian multiplier µ:

∀i ∈ {1, . . . ,K} B?
i = arg min

Bi∈RN×N

∑
j∈Si

min
cj∈Cj

{
‖f j −Bicj‖22 + µ‖cj‖p

} s.t. BT
i Bi = I, (11)

where ‖ · ‖p denotes the lp-norm of a vector (p ∈ [0, 1]), I is the unity matrix and Cj is the set of possible values
that cj can take on. The solution of each minimization problem can be found by means of iterative conditional
minimization over the Bi’s and cj ’s.

More particularly, Sezer et al. address the case where Cj =RN ∀j and p=0. They show that the conditional
minimization with respect to cji with fixed Bi is then given by the following threshold operator:

cji (l) =
{

vji (l) if |vji (l)| >
√
µ

0 otherwise
(12)

where vji = BT
i f j .

After convergence of the iterative conditional minimization, the subsets of blocks used to optimize each basis
is updated as follows

∀i ∈ {1, . . . ,K} Si =
{
j ∈ {1, . . . , L}

∣∣B?
i = arg min

B∈B?
local

min
cj∈Cj

{‖f j −Bcj‖22 + µ‖cj‖p}
}
, (13)

where B?local , {B?
1, . . . ,B

?
K} is the set of bases optimized in (11).

3.2 Extensions and improvements

In this section, we introduce some modifications in Sezer’s algorithm in order to improve its convergence and its
performance in a rate-distortion sense. To study the relevance of these modifications, we apply the learned bases
on 8×8 blocks and adopt a simple coding scheme, using Huffman codes to encode the quantized coefficients and
a run-length encoder to code the indices of the nonzero coefficients. The rate-distortion performance achieved
is then compared with Sezer’s one.

∗The value of γ actually depends on the practical coding implementation, see section 4.
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Figure 1. Rate-distortion performance achieved by two different initializations: KLT and DDCT.

At the initialization step, Sezer et al. perform a classification of the training blocks into K subsets by means
of image gradients. On each subset, the basis is then initialized to the Karhunen-Loeve transform (KLT) using
the corresponding blocks. We proceed differently, by first initializing K bases independently of the training
set and then linking the training blocks to one of the bases with (13). To this purpose, we propose to use
the directional DCT (DDCT) introduced by Zeng et al.,13 which provide better coding performance for image
blocks that contain directional edges. Thus, using DDCT encourages an initial classification of the image blocks
according to some directional similarities. In this paper, we want to exploit anisotropic supports. We thus
extend the principle of DDCT to rectangular bases.
Fig. 1 presents the rate-distortion performance achieved by Sezer’s algorithm initialized by KLT and by DDCT
on image Barbara. The latter improves the PSNR by more than 1dB at low bit rates.
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Figure 2. Rate-distortion performance achieved by two different optimization norms: l0-norm and l1-norm.

Another important issue is the choice of the lp-norm used in (11) which can lead to different performance.
The case p= 0 implements the actual “sparsity” criterion. However, since problem (11) is not convex (the
equality constraints are not linear) there can exist several local minima. Hence, other choices of p may be
advantageous in terms of convergence of the iterative optimization algorithm. In particular, we investigate the
case p=1, which de facto is often used instead of the l0-norm in sparse standard problems. The solution of (11)
with l1-norm can also be obtained by a simple thresholding operation as shown by Lesage et al.:14

cji (l) =


vji (l)− µ/2 if vji (l) > µ/2
0 if |vji (l)| ≤ µ/2
vji (l)− µ/2 if vji (l) < −µ/2

(14)

where vji = BT
i f j .



The comparative rate-distortion curves are given in Fig. 2 on image Roof. Both algorithms are initialized with
DDCT. We can see that the choice of the l1-norm leads to a slight improvement of the PSNR.
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Figure 3. Rate-distortion performance achieved with and without integration of the quantization in the learning algorithm:
(a) on 4×4 blocks, (b) on 8×8 blocks.

Finally, since the learned bases are used in an image compression context, it seems interesting to integrate the
knowledge of the coding scheme used after the transform step. In practice, this comes to take the quantization
into account and thus, to constraint the Cj ’s to be discrete sets of points. If we consider a uniform quantizer
with a quantization step ∆ and a deadzone equal to 2∆, we have Cj = {0} ∪ {±( 3

2∆ + k∆)}k∈N. Using such
a definition for the Cj ’s implicitely relates the set of optimized bases to the quantizer used in the considered
coding scheme.
Fig. 3 analyses the relevance of the integration of quantization in the learning algorithm on image Peppers.
The algorithms are initialized with DDCT and use the l1-norm. For 4×4 blocks, it improves the rate-distortion
performance at moderate-to-high bit rates (see Fig. 3(a)). However it is not the case at low bit rates, or for
blocks of higher size as we can see in Fig. 3(b) for 8×8 blocks. Several reasons can explain these disappointing
results. The most likely one involves the classification step used in the learning algorithm. Indeed, taking the
quantization into account generates new instabilities: the gap between the real and the quantized values is
higher at low bit rates and has an even more important impact on the rate-distortion performance because of
the small number of nonzero coefficients. As the block size increases, this behaviour is reinforced by the sparsity
constraint. As a consequence, we will not take the quantization into account in the final version of the learning
algorithm used in the codec presented in section 4.

4. IMAGE CODEC: IMPLEMENTATION AND RESULTS

In this section, we detail the implementation of our image compression codec and illustrate its performance.

We consider a dictionary of image bases constructed as explained in section 3. The supports of the local
bases range from 32×32 to 4×4 pixels. Depending of the size of the support, we used between 50000 and 400000
training blocks to optimize a set of 7 bases by the procedure and the improvements described in section 3.2. The
bases are first initialized with DDCT whose directional modes correspond to the prediction modes of H.264.15

Mode “1” stands for the conventional DCT. Finally, the transform basis is selected with the optimization
procedure described in section 2.3.

The quantized transform coefficients are encoded with Huffman codes. The Huffman tables are optimized
according to the size of the support of the local transforms. The indices of the nonzero coefficients I are encoded
with a run-length encoder.
The encoding of the local basis indices is performed by means of a quadtree, as illustrated in Fig. 4. Fig. 4(a)
represents the supports of the local bases. The number inside each support corresponds to the selected local
basis. Fig. 4(b) represents the quadtree encoding of the corresponding indices. We proceed as follows. The



image is segmented into 4 square blocks of equal dimension. If all the local bases in a block have the same
index, this block corresponds to a leaf of the quadtree and is labelled by the common index of the local bases
in the block; otherwise the block is subdivided into 4 square blocks and so one.
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Figure 4. (a) Example of a bintree segmentation and (b) the corresponding quadtree encoding of the local basis indices

In Fig. 5, we illustrate the performance achieved by our codec for the compression of “Cameraman”. Fig.
5(a) represents the supports of the local bases making up the image basis as well as their indexes for µ= 50. Fig.
5(b) compares the rate-distortion performance obtained by our compression scheme to the one obtained by the
“Sparse Learned Bases” restricted to 8×8 pixels blocks and the compression standards JPEG and JPEG2000.
We can notice that the proposed codec outperforms JPEG by more than 1 dB at low bit rates. As shown in
Table 1, this observation holds for all the images we have tested. As far as “Cameraman” is concerned, we
can also observe that the proposed codec slightly outperforms JPEG2000 at low bit rates. Additional results in
Table 1 show that the proposed codec exhibits a good behavior with respect to JPEG2000.
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Figure 5. (a) Local basis supports obtained for “Cameraman” at R = 0.51 bit-per-pixel and PSNR= 31.57 dB. The
number denotes the basis selected on each support. (b) Rate-distortion curves for the compression of “Cameraman” with
the proposed codec (“Bintree SLT”), the “Sparse Learned Transform” restricted to 8×8 pixels blocks (“8×8 Blk SLT”),
JPEG2000 and JPEG standards.

5. CONCLUSION

In this paper, we studied the performance of a “basis-adaptive” image compression codec. The set of bases used
in the codec is built by the concatenation of local anisotropic sparse learned bases. The selection of the optimal
basis is made by exploiting the bintree structure of the basis dictionary and using dynamic programming. The
local anisotropic bases are learned according to the algorithm presented by Sezer et al.1 We proposed and



Rate Lena (512×512 pixels) Barbara (512×512 pixels) Roof (512×512 pixels)

(bpp) Codec JPEG2000 JPEG Codec JPEG2000 JPEG Codec JPEG2000 JPEG

(dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)

0.1 29.50 29.90 - 25.27 24.80 - 24.47 23.50 18.75
0.2 32.42 33.00 29.88 27.99 27.30 24.03 27.36 26.50 22.79
0.5 36.74 37.30 35.44 32.44 32.20 29.75 33.07 31.70 29.59
0.7 38.21 38.66 36.82 34.50 34.28 32.30 35.84 34.18 32.57
1.0 39.67 40.40 38.54 37.24 37.10 35.18 39.00 37.60 35.94
1.5 41.86 42.80 - 40.30 40.40 38.24 42.83 42.30 39.93

Table 1. Summary table of the rate-distortion performance for the compression of 3 different images with the proposed
codec and the standards JPEG and JPEG2000.

introduced several modifications in this algorithm, involving the initialization of the bases and the lp-norm used
in the sparse optimization.

As far as the images tested are concerned, the proposed codec outperforms JPEG in terms of rate-distortion
and is slightly superior to JPEG2000 in most cases.
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