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ABSTRACT

This paper proposes a new compression algorithm based on

the directional DCT (DDCT) bases introduced in [1]. We

first explain how to extend the DDCT concept to rectangular

bases and exploit them to build a set of bases using a bintree

segmentation. We then use dynamic programming to select

a basis from this set according to a rate-distortion criterion.

Comparisons in terms of rate-distortion performance are fi-

nally made with the current compression standards JPEG and

JPEG2000.

Index Terms— Sparsity, Optimization, Anisotropic Di-

rectional DCT basis.

1. INTRODUCTION

Recent results in image compression tend to show that adap-

tation of the transform to the local characteristics of the image

allows a gain in performance. In practice, the optimization of

the transform to the image characteristics can mainly be made

at two levels: i) in the spatial domain by adapting the support

of the transform; ii) in the transformed domain by adapting

the atoms of the projection basis to the signal characteristics

we want to describe.

Several contributions considering these general approaches

can be found in the literature. In [2], Chen suggests to use

the DCT on blocks of variable size. In [3], Meyer compares

different lapped DCT transforms. At the same time, a num-

ber of new transform bases have emerged. In [4], the authors

replace the DCT in the JPEG scheme by other transforms,

better adapted to the local statistics of each block. In a similar

way, Sezer et al. optimize a library of bases on a training

set to maximize the sparsity of the transformed vectors (see

[5]).We can likewise refer to the well-known wavelets [6],

curvelets [7], contourlets [8] and bandelets [9], which are

very effective at describing the edges of an image. Finally,

we find in [10] a hybrid approach, where the authors optimize

both the size of the blocks and the direction of a bandelet

basis.

In this paper, we study a different hybrid approach: on the

one hand, we consider the library of directional DCT (DDCT)

bases developed by Zeng et al. in [1]; on the other hand,

we use a bintree block segmentation, which allows a better

flexibility in the adaptation of the basis to the local properties

of the image.

2. ANISOTROPIC DIRECTIONAL DCT

2.1. Low-bit rate compression and sparsity

We consider a compression scheme using an orthonormal ba-

sis B = {bk}N
k=1 and a quantizer Q. An image block f of N

pixels is then approximated by f̂ as

f̂ =
N∑

k=1

Q(〈f, bk〉)bk (1)

where 〈f, bk〉 denotes the scalar product between vectors f
and bk.

In that context, Mallat and Falzon show in [11], that the

number of nonzero quantized transform coefficients (i.e.,
scalar products), say M , plays a crucial role in the charac-

terization of the rate-distortion performance at low bit rates.

On the one hand, they emphasize that the distortion D can be

linked to the number of nonzero coefficients M via a function

ϕ(M) which modelizes the ability of the basis to approximate

a signal with M projection coefficients, i.e.,

D = ϕ(M). (2)

On the other hand, they show that the rate required to repre-

sent the quantized coefficients is proportional to M , i.e.,

R = γ M. (3)

As a consequence, Mallat and Falzon’s work leads to the

following observation: at low bit rates, the rate-distortion per-

formance depends on the ability of the basis to provide a good

approximation of the signal with few coefficients.

In practice, different bases are often well-suited to dif-

ferent kinds of images. This suggests that enhanced rate-

distortion performance could be achieved by adapting the pro-

jection basis to the image to compress.

In this paper, we propose to test the performance achieved

with a set of bases constructed from the concatenation of local

DDCT bases. We explain the construction of this set of bases

in the remainder of this section.

1290978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010



2.2. Directional DCT bases

In [1], the authors introduce square directional DCT (DDCT)

bases able to provide better coding performance for image

blocks that contain directional edges. In this section, we ex-

tend this principle to rectangular bases.

The key idea of DDCT relies on the separability property

of the standard 2D-DCT transform i.e., a 2D-DCT can be re-

alized by performing successively a 1D-DCT on the columns

and a 1D-DCT on the rows of the considered image block.

The construction of the directional DCT is based on the mod-

ification of the scan order of the block pixels to create bases

with some “selected” directions.

For the sake of clarity, we expose the construction of the

DDCT transform for a block of 8×4 pixels and the “diago-

nal down-left” directional mode represented in Fig. 1. The

extension to other directional modes is straightforward.

To any directional mode we associate a scan order defined

by a set of vectors {vk}k. Each vector vk contains a subset of

pixels taken according to a given direction. For the “diagonal

down-left” mode illustrated in Fig. 1, the vk’s contain the

pixels located on a same arrow. They have therefore different

lengths.

v1 v2 v3 v4

v5

v6

v7

v8

v9

v10

v11

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

f =

Fig. 1. Pixels ordering for the “diagonal down-left” mode on

a rectangular block

Pixels can be reordered as illustrated in Fig. 1, resulting

in a “pyramidal” pixel array, whose columns are the vectors

vk’s. Considering this array, the process is then similar to the

conventional 2D-DCT. A first DCT is primarily performed on

the columns vk’s; a second DCT is then performed on the

rows of the resulting “pyramidal” matrix, as illustrated in Fig.

2.

DCT on columns DCT on rows

Fig. 2. “Diagonal down-left” DCT transform on a rectangular

block

The transform block f̃ is finally obtained by rearranging

the coefficients into their initial positions in f .

2.3. “Bintree” concatenation of local DDCT bases

A common way to form an image basis from local bases is to

use a quadtree. This method leads to a set of bases which are

the concatenation of square local bases whose support sizes

can possibly be different (see [10] for example). In this pa-

per, we want to exploit anisotropic (rectangular) local basis

supports. This is achieved by the use of a bintree.

With this additional degree of freedom, a bintree segmen-

tation increases the number of possible image bases. On the

one hand, we can intuitively assume that the more bases we

have at our disposal, the more likely we are to select a basis

which properly catches the local properties of the image with

few coefficients. On the other hand, this leads to an increase

of the bit rate since the choice of the selected basis has to be

transmitted.

Therefore, in addition to the bit rate required to code the

transform coefficients (expressed in (3) and noted Rc here),

we have to take into account the encoding cost of the image

basis, i.e., the cost associated to the encoding of the tree spec-

ifying the local basis supports (noted Rs), and the cost asso-

ciated to the encoding of the local directional modes (noted

Rm). The total bit rate can then be expressed as:

R = Rc + Rs + Rm. (4)

In the next section we will discuss how to select the ba-

sis which leads to the best compromise in terms of rate-

distortion. The use of a bintree instead of a quadtree in-

creases Rs but we could observe experimentally that this is

compensated by a better local adaptivity, resulting in a gain

in performance.

3. DDCT BASED IMAGE COMPRESSION

3.1. Basis selection

In the transform coding paradigm, two parameters can impact

the rate-distortion performance: the transform basis and the

quantization of the transform coefficients. Therefore, the rate-

distortion optimization problem can be formalized as follows:

(B�,Q�) = arg min
B,Q

D(B,Q)

subject to R(B,Q) ≤ Rt, (5)

where B (resp. Q) is a trial image basis (resp. quantizer) and

Rt is a target rate we specify as a constraint.

Solving (5) is usually intractable. Instead, Shoham and

Gersho showed in [12] that, under some conditions, this prob-

lem is equivalent to a simplified unconstrained problem de-

pending on a Lagrangian multiplier λ:

(B�
λ,Q�

λ) = arg min
B,Q

D(B,Q) + λR(B,Q), (6)

In our compression scheme, we consider a scalar uniform

quantizer with a quantization step Δ and a deadzone equal to
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Fig. 3. (a) Bintree DDCT segmentation obtained for “Cameraman” at R = 0.46 bpp and PSNR= 31.4 dB. (b) Rate-distortion

curves for the compression of “Cameraman” with the proposed coder, the DDCT applied on 8×8 blocks, the JPEG2000 standard

and the JPEG standard

2Δ. Optimizing Q is then equivalent to optimizing Δ. In this

context, Le Pennec and Mallat proved in [10] that, as long

as assumption (3) is valid, the optimal quantization step, say

Δ�
λ, is related to λ as follows:

Δ�
λ =

√
4 γ λ

3
. (7)

With this result, problem (6) reduces to optimizing the

rate-distortion function with regard to basis B, i.e.,

B�
λ = arg min

B
D(B, Δ�

λ) + λ R(B, Δ�
λ). (8)

The solution of this problem can be found efficiently us-

ing dynamic programming [13] provided that: i) the set of

image bases is the “tree” concatenation of local bases; ii) the

distortion and the rate can be decomposed into local terms as-

sociated to each local basis. The first condition is obviously

satisfied by our set of image bases, see section 2.3. The sec-

ond one has to be verified for the “global” terms Rc, Rs and

Rm.

Using assumption (3), the first term Rc obviously satisfies

the condition. For the DDCT basis, we estimate1 Rc = 6.5 M
as a good approximation of the rate required to encode the

transform coefficients. For the two following terms Rs and

Rm, some additional coding assumptions are required: i) we

adopt a simple implementation of the bintree by assigning “1”

1The value of γ actually depends on the practical coding implementation,

see section 3.2.

to internal nodes and “0” to leaf nodes, this satisfies the con-

dition for Rs; ii) we assume that the choice of the local direc-

tional mode is encoded by a fixed-length code (FLC) allowing

to express Rm as a sum of local terms. In the next section, we

will describe a more efficient way to encode the directional

modes. Here, the resulting Rm can therefore be seen as an

upper bound on the rate which can actually be achieved by

our practical scheme.

3.2. Implementation and results

In this section, we detail the implementation of our image

compression codec and illustrate its performance.

We consider a dictionary of image bases constructed as

explained in section 2. The supports of the local bases range

from 32×32 to 4×4 pixels. For each size of support, we con-

sider 7 directional modes which correspond to the prediction

modes of H.264, see [14]: mode “1” corresponds the con-

ventional DCT; modes “2” to “7” correspond to “oriented”

DCTs. The transform basis is selected with the optimization

procedure described in section 3.1.

The quantized transform coefficients are encoded with

Huffman codes. The Huffman tables are optimized according

to the size of the support of the local transforms. The indices

of the M nonzero projection coefficients are encoded with a

run-length encoder.

The encoding of the directional modes is performed by means

of a quadtree proceeding as follows. The image is segmented

into 4 square blocks of equal dimension. If all the local bases

in a block have the same directional mode, this block corre-
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Rate (bpp) Lena (512×512 pixels) Barbara (512×512 pixels) Roof (512×512 pixels)

Coder (dB) JPEG2000 (dB) JPEG (dB) Coder (dB) JPEG2000 (dB) JPEG (dB) Coder (dB) JPEG2000 (dB) JPEG (dB)

0.1 29.48 29.90 - 25.31 24.80 - 24.63 23.50 18.75

0.2 32.65 33.00 29.88 28.14 27.30 24.03 27.53 26.50 22.79

0.5 36.76 37.30 35.44 32.69 32.20 29.75 33.25 31.70 29.59

0.7 38.36 38.66 36.82 34.91 34.28 32.30 35.98 34.18 32.57

1.0 39.70 40.40 38.54 37.29 37.10 35.18 39.03 37.60 35.94

1.5 41.83 42.80 - 40.38 40.40 38.24 42.95 42.30 39.93

Table 1. Summary table of the rate-distortion performance for the compression of 3 different images with the proposed coder

and the standards JPEG and JPEG2000.

sponds to a leaf of the quadtree and is labeled by the common

directional mode of the local bases in the block; otherwise

the block is subdivided into 4 square blocks and so one.

In Fig. 3, we illustrate the performance achieved by our

codec for the compression of “Cameraman”. Fig. 3(a) repre-

sents the supports of the local bases making up the image ba-

sis as well as their directional modes for λ=100. We can no-

tice that conventional DCT (mode “1”) is selected in smooth

areas whereas DDCT transforms are used in areas where di-

rectionality is more important (e.g., oriented edges).

Fig. 3(b) compares the rate-distortion performance ob-

tained by our compression scheme to the one obtained by

the DDCT applied on 8×8 pixels blocks and the compres-

sion standards JPEG and JPEG2000. We can notice that the

proposed codec outperforms JPEG by more than 1 dB at low

bit rates. As shown in Table 1, this observation holds for all

the images we have tested. As far as “Cameraman” is con-

cerned, we can also observe that the proposed codec slightly

outperforms JPEG2000 at low bit rates. Additional results in

Table 1 show that the DDCT-based codec usually exhibits a

good behavior with regard to JPEG2000.

4. CONCLUSION

In this paper, we studied the performance of a “basis-

adaptive” image compression codec. The set of bases used

in the codec is built by the concatenation of local anisotropic

DDCT bases. The selection of the optimal basis is made by

exploiting the bintree structure of the basis dictionary and

using dynamic programming.

As far as the images tested are concerned, the proposed

coder outperforms JPEG in terms of rate-distortion and is

slightly superior to JPEG2000 in most cases.
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