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ABSTRACT

In this paper, we consider the problem of dictionary learning for
sparse representations. Several algorithms dealing with this prob-
lem can be found in the literature. One of them, introduced by Sezer
et al. in [1] optimizes a dictionary made up of the union of orthonor-
mal bases. In this paper, we propose a probabilistic interpretation of
Sezer’s algorithm and suggest a novel optimization procedure based
on the EM algorithm. Comparisons of the performance in terms of
missed detection rate show a clear superiority of the proposed ap-
proach.

Index Terms— Sparse representations, dictionary learning,
expectation-maximization algorithm.

1. INTRODUCTION

Sparse representations aim at describing a signal as the combination
of a small number of atoms chosen from an overcomplete dictionary.
This kind of decomposition has recently been shown to provide a
nice solution in a variety of domains including compressed sensing,
denoising, inpainting, etc.

Formally, the sparse representation problem can be formulated
as follows. Let D∈R

N×M be a dictionary with N≤M and y∈R
N

an observed signal. We want to find the vector x∈R
M such that:

min
x
‖y −Dx‖22 subject to ‖x‖0 ≤ L, (1)

where ‖x‖0 denotes the l0-norm, i.e., the number of nonzero coeffi-
cients in x and L is a given constant. Note that problem (1) is also
often expressed in its Lagrangian version:

min
x
‖y −Dx‖22 + λ‖x‖0, (2)

where λ is a Lagrangian multiplier.
Closely related to the sparse representation problem (1)-(2) is

the design of dictionaries adapted to “sparse” representations. For-
mally, the problem can be expressed as follows: given a training set
{yj}K

j=1, find the dictionary D� which leads to the best distortion-
sparsity compromise, i.e.,

D� = argmin
D

{∑
j

min
xj

‖yj −Dxj‖22 + λ‖xj‖0
}

. (3)

Several algorithms available in the literature deal with this problem.
One of the most successful is the K-SVD algorithm proposed by
Aharon et al. in [2] which sequentially seeks the solution of (3)
by using a SVD decomposition of a residual matrix. In another ap-
proach by Lesage et al. (see [3]) the authors suggested an algorithm
to optimize a dictionary made up of the union of P orthonormal
bases. In the same spirit as Lesage’s work, Sezer et al. proposed

more recently in [1] a two-step iterative algorithm for solving the
same kind of problem: in a first step the training data are classified
into P different subsets; then, each subset is used to optimize a par-
ticular basis. The optimization of dictionary made up of P orthonor-
mal bases is motivated by results presented in [4]. More precisely,
Mallat and Falzon established in [4] that at low bit rates and in the
context of orthonormal transforms, the rate-distortion performance
depends on the ability of the basis to provide a good approximation
of the signal with few coefficients. This result suggests the optimiza-
tion of bases adapted to different local characteristics, which is the
purpose of Sezer’s algorithm.

In this paper, we place the problem of learning a dictionary made
up of P orthonormal bases into a probabilistic framework. In this
context, we show that Sezer’s algorithm can be interpreted as a max-
imum a posteriori (MAP) problem. We then propose an alternative
approach for the optimization of the dictionary based on a different
MAP criterion. We give a practical implementation of this criterion
based on the well-known expectation-maximization (EM) algorithm.

2. DICTIONARY OPTIMIZATION BASED ON THE EM
ALGORITHM

2.1. A probabilistic framework for the optimization of P or-
thonormal bases

Let {yj}K
j=1 be a set of training signals for the optimization of an

overcomplete dictionary D. We suppose that D is made up of P
orthonormal bases, i.e.,

D � [D1, . . . ,Di, . . . ,DP ], DT
i Di = IN , (4)

where IN is the N -dimensional identity matrix. We thus have M =
P×N . Let finally xji denote the vector made up of the components
of xj which correspond to basis Di, i.e.,

xT
j � [xT

j1, . . . ,x
T
ji, . . . ,x

T
jP ]

T . (5)

Based on these definitions, we consider the following model for yj :

p(yj |D) =

∫
RM

P∑
cj=1

p(yj |xj ,D, cj) p(xj |cj) p(cj) dxj , (6)

with

p(yj |xj ,D, cj = i) = N (Dixji, σ
2IN ) (7)

where N (μ,Γ) denotes a Gaussian distribution with mean μ and
covariance Γ, and

p(xj |cj = i) ∝ exp{−λ‖xji‖0}, (8)
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where λ>0 and ∝ denotes equality up to a normalization factor 1.
This imposes sparsity on xji.

The model (6)-(8) can be interpreted as follows: each yj is as-
sumed to be a noisy combination of vectors from one single ba-
sis; the choice of the basis is indexed by cj . Sparsity is encour-
aged via prior (8) which penalizes xji’s with many nonzero ele-
ments. p(yj |D) can therefore be understood as a mixture of Gaus-
sians N (Dixji, σ

2IN ) where each element is weighted by a factor
depending on the sparsity of xji and the prior probability p(cj = i).

2.2. Sezer’s algorithm revisited

In [1], Sezer et al. proposed an iterative algorithm for the “sparse”
optimization of dictionary made up of a set of orthonormal bases.
The algorithm iterates between two main steps (see Table 1): in
a first step, each observation is assigned to a family Si, i ∈
{1, . . . , P}; in a second step, the training data associated to family
Si are used to optimize basis Di under a sparsity-distortion crite-
rion. Note that λ′ (see Table 1) is a user-defined parameter which
allows a tuning between sparsity and distortion.

In this section we show that Sezer’s algorithm can be under-
stood as a particular implementation of a MAP problem within the
probabilistic framework exposed in section 2.1. Indeed, let X=
[x1, . . . ,xj , . . . ,xK ] be a matrix whose columns are sparse vectors
xj’s and c=[c1, . . . , cK ]

T a vector made up of the concatenation
of the cj’s. If we make the assumption

p(cj)=
1
P

, ∀ cj , ∀ j , and λ′ = 2λσ2, (9)

then recursions (13)–(16) can be reformulated as follows:

c(k) = argmax
c

K∑
j=1

log p(yj ,x
(k−1)
j ,D(k−1)), (10)

(D(k),X(k)) = argmax
(D,X)

K∑
j=1

log p(yj ,xj ,D, c
(k)
j ). (11)

The equivalence between (10)-(11) and (13)-(16) is straightforward
by taking model (6)-(8) into account. The detailed derivations are
however omitted here due to space limitation.

It is clear from (10)-(11) that Sezer’s algorithm is equivalent to
a coordinate-ascent implementation of the following MAP problem:

(D�,X�, c�) = arg max
(D,X,c)

K∑
j=1

log p(yj ,xj ,D, cj). (12)

Interestingly, the MAP formulation of Sezer’s algorithm gives a con-
nection between the user parameter λ′ and the physical parameters
of the model λ, σ2.

It is important to note that there is in general no guarantee of
the convergence of Sezer’s algorithm. Indeed, although (10)-(11) in-
crease the goal function

∑K
j=1 log p(yj ,xj ,D, cj) at each iteration,

the cj’s can only take on values in a finite set (i.e., cj∈{1, . . . , P}).
This prevents us from applying any general convergence results.

1Note that (8) is actually improper since the normalization factor is equal
to ∞. This technical problem does however not lead to any particular issue
in the rest of the paper.

0. Initialization
- Set D(0) = D0.

- ∀i ∈ {1, . . . , P}, ∀j ∈ {1, . . . , K}, set

x
(0)
ji = arg min

xji

{
‖yj − D

(0)
i xji‖2

2 + λ′‖xji‖0

}
.

1. Classification
∀ i ∈ {1, . . . , P}, compute

S(k)
i =

{
j ∈ {1, . . . , K} ∣∣ c

(k)
j = i

}
, (13)

where

c
(k)
j = arg min

i∈{1,...,P}

{
‖yj − D

(k−1)
i x

(k−1)
ji ‖2

2 + λ′‖x(k−1)
ji ‖0

}
. (14)

2. Basis update
∀i ∈ {1, . . . , P}, ∀j ∈ {1, . . . , K}, update Di and xji as follows:

D
(k)
i = arg min

Di

{ ∑
j∈S(k)

i

min
xji

{‖yj − Dixji‖2
2 + λ′‖xji‖0}

}

subject to DT
i Di = IN , (15)

x
(k)
ji = arg min

xji

{
‖yj − D

(k)
i xji‖2

2 + λ′‖xji‖0

}
. (16)

3. Convergence check
If convergence is reached, set D�=D(k); otherwise go to step 1.

Table 1. Sezer’s algorithm

2.3. An EM-algorithm approach for dictionary optimization

In the last section, we emphasized that Sezer’s algorithm can be in-
terpreted as an iterative algorithm for solving a joint (over D,X and
c) MAP estimation problem. This formulation suggests alternative
approaches for the optimization of the dictionary. In this paper, we
consider the following marginalized MAP estimation problem:

(D�,X�) = argmax
(D,X)

K∑
j=1

log p(yj ,xj ,D), (17)

where

p(yj ,xj ,D) =
P∑

cj=1

p(yj ,xj ,D, cj). (18)

Problem (17) has usually no easy analytical solution. Nevertheless, it
can be solved efficiently by means of the expectation-maximization
(EM) algorithm [5].

The EM algorithm operates in two steps. First a lower bound
on

∑
j log p(yj ,xj ,D) is computed by taking the current value of

the parameters of interest into account; this step is usually refered
to as expectation step (E-step). Then, the value of the parameters
is updated by maximizing the lower bound (M-step). In particular,
as far as problem (17) is concerned, the E-step and M-step can be
formalized as :

E-step:

Q(D,X,D(k),X(k)) =
K∑

j=1

P∑
i=1

w
(k)
ji log p(yj ,xj ,D, cj), (19)

where w
(k)
ji � p(cj = i|yj ,x

(k−1)
j ,D(k−1)).
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0. Initialization
- Set D(0) = D0.

- Set λ′ � 2λσ2.

- ∀i ∈ {1, . . . , P}, ∀j ∈ {1, . . . , K}, set

x
(0)
ji = arg min

xji

{
‖yj − D

(0)
i xji‖2

2 + λ′‖xji‖0

}
.

1. E-step
∀i ∈ {1, . . . , P}, ∀j ∈ {1, . . . , K}, compute

w
(k)
ji ∝ exp(− 1

2σ2
‖yj − D

(k−1)
i x

(k−1)
ji ‖2

2 − λ‖x(k−1)
ji ‖0) p(cj).

(22)

2. M-step
∀i ∈ {1, . . . , P}, ∀j ∈ {1, . . . , K}, update Di and xji as follows:

D
(k)
i = arg min

Di

{ K∑
j=1

w
(k)
ji min

xji
{‖yj − Dixji‖2

2 + λ′‖xji‖0}
}

subject to DT
i Di = IN , (23)

x
(k)
ji = arg min

xji

{
‖yj − D

(k)
i xji‖2

2 + λ′‖xji‖0

}
. (24)

3. Convergence check
If convergence is reached, set D�=D(k); otherwise go to step 1.

Table 2. EM-based learning algorithm

M-step:

(D(k+1),X(k+1)) = argmax
(D,X)

Q(D,X,D(k),X(k)). (20)

The E-step (19) and M-step (20) equations are particularized to
model (6)-(8) in Table 2. Note that the EM algorithm is always
ensured to converge (see [6]). This is a key advantage with regard to
Sezer’s algorithm. The fixed points of the EM algorithm are either
saddle points or maxima of

∑
j log p(yj ,xj ,D).

It is quite interesting to compare the operations performed by
the proposed algorithm and Sezer’s. In particular, the E-step (22)
can be regarded as a “soft” version of the classification performed

by Sezer’s algorithm. Indeed, whereas a hard decision c
(k)
j is made

about the value of cj in (14), the EM algorithm rather computes an a
posteriori probability of cj . It is easy to see that

c
(k)
j = argmax

cj

p(cj = i|yj ,x
(k−1)
j ,D(k−1)). (21)

Sezer’s algorithm can therefore be interpreted as a thresholded ver-
sion of the EM algorithm. The M-step is quite similar to the basis
update of Sezer’s algorithm. In practice, the main difference between
both algorithms relies on the fact that in Sezer’s algorithm, each ba-
sis Di is optimized using only the vectors contained in the subset
Si, while in the proposed algorithm, the entire training set {yj}K

j=1

is used by weighting each contribution of the yj’s by wji (i.e., the
probability of choosing basis Di given xji).

2.4. Algorithm implementation

In this section we discuss the practical implementation of the pro-
posed algorithm.

As emphasized in the last section, the E-step can be seen as an
extension of the classification step in Sezer’s algorithm. Basically,

both algorithms perform similar computations (see Tables 1 and 2).
The complexity of these steps is thus of the same order.

We implement the M-step by an iterative conditional method
which successively optimizes X and D:

x
(l)
ji =argmin

xji

{‖y −D
(l−1)
i xji‖22 + λ‖xji‖0}, (25)

D
(l)
i =argmin

Di

{
K∑

j=1

w
(k)
ji ‖yj −Dix

(l)
ji ‖22}

subject to D
(l)T
i D

(l)
i = IN . (26)

where k is the EM-algorithm iteration number and l the iteration
number in the maximization step.
Problem (25) can be solved by greedy algorithms like Matching Pur-
suit ([7]) or relaxation algorithms like Basis Pursuit ([8]). In our
case, Di is orthonormal and the exact solution can be obtained by a
simple thresholding operation, see [1].
With a development similar to the one in [1] and first proposed in
[3], we can show that minimization (26) is achieved by computing:

∀ i ∈ {1, . . . , P}, D
(l)
i = VUT , (27)

where UΔ1/2VT is the singular value decomposition (SVD) of∑K
j=1 w

(k)
ji x

(l)
ji yT

j . The complexity of the proposed EM approach
and Sezer’s algorithm is thus similar.

2.5. Estimation of the noise variance

A key advantage of the probabilistic formulation introduced in this
paper is that it offers a general framework for the estimation of the
model parameters. In this section, we focus on the estimation of the
noise variance σ2. The estimation of this parameter can be made by
including σ2 as a new unknown variable in the MAP problem (17),
i.e.,

(D�,X�, (σ2)�) = argmax
(D,X,σ2)

K∑
j=1

log p(yj ,xj ,D). (28)

The equations of the EM algorithm are adapted to this new problem
by adding the following update in the M-step:

(σ2)(k) =
1

NK

K∑
j=1

P∑
i=1

w
(k)
ji ‖yj −D

(k)
i x

(k)
ji ‖22. (29)

In the next section, we will see that the estimation of the noise vari-
ance is crucial for the convergence of the algorithms (whether the
actual noise variance is known or not).

3. SYNTHETIC EXPERIMENTS

In this section, we evaluate and compare the performance of three
algorithms:

• “Sezer”: learning algorithm proposed in [1] and defined in
Table 1.

• “EM”: algorithm defined in Table 2 where the noise variance
estimation (29) is also implemented.

• “EM thresholded”: similar to “EM” where the E-step is ap-
proximated by a thresholded decision (21).

Note that “Sezer” and “EM thresholded” are similar but distinct
since the latter implements a noise variance estimation which is not
present in the deterministic formulation of [1].
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Fig. 1. Comparison between Sezer’s, EM and EM-thresholded al-
gorithms for different dictionary initializations (dashed line a=0.2,
full line a=0.3).

3.1. Generation of the training data

We use synthetic signals to test whether the algorithms recover
the original dictionary that generated the data. 200 training sig-
nals yj are generated according to model (6)-(8). We consider
a dictionary made up of six 8×8 random orthonormal matrices
D = [D1, . . . ,D6] generated with a uniform law. Each basis is
selected with probability p(cj)=1/6. Vectors xj’s contain L=2
nonzero coefficients at random locations. The amplitude of the
nonzero coefficients are drawn from a zero-mean Gaussian distribu-
tion with variance σ2

a=16.

3.2. Initialization of the algorithms

The dictionary was initialized from the original dictionary as fol-
lows:

∀i ∈ {1, . . . , P} D
(0)
i = DiM

T
(30)

where M=GS(I8 + N(a)), GS represents the Gram-Schmidt or-
thogonalization process and N(a) represents a 8×8-matrix whose
elements are i.i.d. realizations of a uniform law on [−a, a]. This

formulation allows for controlling the deviation of D(0) to D. We

initialize the x
(0)
ji ’s by solving problem (25) with D(0). The noise

variance is initialized as (σ2)(0)=σ2
x where σ2

x � (L/N)σ2
a.

3.3. Performance evaluation

The performance of the algorithms is evaluated via the missed-
detection rate (MDR) corresponding to the relative number of orig-
inal atoms that “are not matched” by any estimated atom. Since all
the atoms have unit norm, two atoms d1 and d2 are considered to
match if and only if |dT

1 d2|≥ξ, where ξ is fixed to 0.99. The MDR
is evaluated versus the signal-to-noise ratio (SNR) which is defined
as SNR � 10 log(σ2

x/σ2).
All three algorithms are initialized in the same way and applied

on the same data set. The algorithms are run for 50 iterations. The
M-step is implemented by iterating 10 times between (25) and (26).

Figure 1 represents the MDR achieved by the different algo-
rithms for a= 0.2 and a= 0.3. We can notice that the proposed
probabilistic approach leads to a clear improvement of the perfor-
mance. When a=0.2, Sezer’s algorithm is slightly better than the
EM and EM-thresholded algorithms for low SNR’s. For dictionary
initializations close to the original dictionary, using the “real” noise
covariance is more advantageous than estimating it. However, for
higher SNR’s, Sezer’s algorithm leads to very poor performance due
to its classification step: with a small noise covariance, the sparsity
constraint is relaxed and increases the potential classification errors.
When the initialization becomes coarser (a= 0.3), EM and EM-
thresholded approaches lead to a clear improvement of the MDR.
The EM performance is slightly better than the EM-thresholded one.

4. CONCLUSION

In this paper, we address the problem of learning a dictionary made
up of P orthonormal bases. This problem is placed in a probabilis-
tic framework by considering the training data as realizations of a
mixture of Gaussians. The learning task is then reformulated as a
MAP estimation problem and an EM-algorithm procedure is derived
to solve it. The proposed algorithm is shown to give enhanced per-
formance with regard to a previously-proposed algorithm.
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