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Abstract—We address the problem of structured sparse representation
within a Bayesian framework. In particular, we consider a mean-field
approximation for the estimation of the dependencies between atoms
using a Boltzmann machine. This algorithm is shown to outperform the
reference algorithm [1] with regard to their success criterion.

Index Terms—Structured sparse representations, Boltzmann machine,
mean-field approximation.

I. INTRODUCTION

Recent contributions have emphasized the interest of considering
structures between atoms selected in sparse representations (SR), for
a wide range of dictionaries and classes of signals. This problem can
be set into a Bayesian framework, e.g. Cevher et al. [2] and Faktor
et al. [1]. Both use Boltzmann machines to model the dependencies
between atoms, but differ in the prior model on the SR coefficients.
In this paper, we consider a similar model as in [1].

Our observation model is y =
∑M
i=1 si xi di + n, where s ∈

{0, 1}M is the SR support, n∼N (0, σ2
nIN ) and IN the identity

matrix. We suppose that ∀i, p(xi)=N (0, σ2
xi) and s is distributed

according to a Boltzmann machine of parameters b and W1:

p(s) ∝ exp(2bT s + 2sTWs− 21TMWs), (1)

where 1M = [1, . . . , 1] of length M .

II. STRUCTURED SOFT BAYESIAN PURSUIT ALGORITHM

Based on this model, we consider here the following marginalized
maximum a posteriori (MAP) estimation problem:

ŝ = arg max
s∈{0,1}M

log p(s|y), (2)

where p(s|y) =
∫
x
p(x, s|y)dx. To tackle problem (2), a greedy

algorithm could be used [1] to approach the solution with a succession
of local decisions. In this paper, we alternatively propose a mean-field
(MF) approximation of p(x, s|y) which approximates p(x, s|y) with
a probability distribution, say q(x, s), constrained to have a “suitable”
factorization while minimizing the Kullback-Leibler distance with
p(x, s|y). Here, q(x, s) is constrained to the structure:

q(x, s) =
∏
i

q(xi, si) =
∏
i

q(xi|si) q(si). (3)

Then the minimization of the Kullback-Leibler distance subject to (3)
can be performed by the “variational Bayes EM algorithm” (VB-EM)
[3], which evaluates the q(xi, si)’s by computing at each iteration2:

q(xi|si) = N (m(si),Γ(si)),

q(si)∝
√

Γ(si) exp
(

1
2
m(si)

2

Γ(si)

)
exp
(
2si(bi+

∑
j 6=i wij(q(sj=1)−1))

)
where Γ(si) =

σ2
xi
σ2
n

σ2
n+σ2

xi
si
, m(si) = si

σ2
xi

σ2
n+σ2

xi
si
〈ri〉Tdi,

〈ri〉 = y −
∑
j 6=i q(sj = 1) m(sj = 1)dj .

1This distribution is equal to the one used in [1], [2] with s∈{−1, 1}M .
2For a sake of clarity, we drop here the iteration indices.

Compared to [1], the proposed algorithm does not make any hard
decision on the SR support at each iteration but rather updates
posterior probabilities. In that way, it can be seen as a soft process.
Both algorithms have similar complexities, of order M2 per iteration.

Coming back to (2), p(s|y) is simplified as p(s|y) '∫
x

∏
i q(xi, si)dx =

∏
i q(si). We finally obtain ∀i ŝi =

arg maxsi∈{0,1} log q(si), which is solved by simple thresholding.

III. EXPERIMENTAL RESULTS

To assess the performance of the proposed algorithm, we follow
the same methodology as in [1]. We generate a large number K of
observations according to the model and estimate the ability of the
algorithm to reconstruct the SR support via the probability

1− 1

K

K∑
k=1

‖s(k) ∩ ŝ(k)‖0
max(‖s(k)‖0, ‖ŝ(k)‖0)

. (4)
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The data is generated
with N = 64, M =
256, and a DCT dictio-
nary. The Boltzmann pa-
rameters are drawn inde-
pendently: the elements
of b from N (−2.5, 1)
and the elements of W
from U [−0.1, 0.1]. The
standard deviations σxi
are i.i.d. realizations of
U [15, 60]. For each point
of simulation, we run 500
trials. We adjust the final threshold at 0.25. The figure above com-
pares 2 algorithms: “MAP-greedy”, proposed in [1] and “SSoBaP”
(for Structured Soft Bayesian Pursuit algorithm), proposed here. For
the performance criterion considered, we can see that “SSoBaP”
outperforms “MAP-greedy” over a wide range of noise variances.

IV. CONCLUSION

In this paper, we have shown that a MF approximation together
with a VB-EM algorithm is a promising and competitive approach
for the estimation of structures between atoms. To the extent of the
considered criterion, the resulting algorithm is shown to outperform
the baseline algorithm [1]. Complementary results, involving other
performance criteria and other state-of-the-art algorithms, will be
added in the final paper to confirm the relevance of this approach.
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