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An Efficient Algorithm for Video Superresolution Based on a Sequential Model*

P. Héas', A. Drémeaut, and C. Herzet!

Abstract. In this work, we propose a novel procedure for video superresolution, that is, the recovery of a
sequence of high-resolution images from its low-resolution counterpart. Our approach is based on
a “sequential” model (i.e., each high-resolution frame is supposed to be a displaced version of the
preceding one) and considers the use of sparsity-enforcing priors. Both the recovery of the high-
resolution images and the motion fields relating them is tackled. This leads to a large-dimensional,
nonconvex and nonsmooth problem. We propose an algorithmic framework to address the latter.
Our approach relies on fast gradient evaluation methods and modern optimization techniques for
nondifferentiable/nonconvex problems. Unlike some other previous works, we show that there exists
a provably convergent method with a complexity linear in the problem dimensions. We assess the
proposed optimization method on several video benchmarks and emphasize its good performance
with respect to the state of the art.
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1. Introduction. Superresolution (SR) aims at reconstructing high-resolution (HR) im-
ages from distorted low-resolution (LR) observations. This type of methodology dates back
to the 1970s with the pioneering work of Gerchberg [26] and de Santis and Gori [16]. Since
then, SR has been applied to a large variety of applicative domains, including infrared [28],
medical [44], satellite, and aerial [40, 49] imaging. We refer the reader to [36] for a pretty
comprehensive overview of the works dealing with SR.

One can distinguish between different setups in the domain of SR. “Single-frame” SR aims
at computing an enhanced version of some HR image from the observation of one single LR
image; see, e.g., [17, 29, 41]. On the other hand, the “multiframe” paradigm typically focuses
on the recovery of one HR image by exploiting the observations of several LR frames; see,
e.g., [21, 39, 23, 25, 35, 51, 32]. Finally, the “video” SR problem consists in estimating a
sequence of HR images from the observations of their LR counterparts. We consider the latter
paradigm in this paper.

From a conceptual point of view, a simple (but valid) solution to address video SR consists
in applying single-frame or multiframe procedures on each frame of the HR sequence to recover.
This strategy was, for example, considered in [21, 39, 23, 25, 35, 51, 32]. Nevertheless, this
approach may fail in properly exploiting the strong temporal correlations existing between the
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(successive) frames of the HR sequence. Hence, procedures specifically dedicated to accounting
for these dependencies have been proposed in the literature; see [48, 19, 20, 53, 60, 22, 27,
47, 46]. A central element is the “sequential” model linking the frames of the HR sequence.
More specifically, in most of these methods, the frames of the HR sequence are supposed
to obey a dynamical model where each HR image is seen as a displaced version (by some
unknown motion field) of the preceding one (see section 3 for a detailed description). This is
in contrast with the standard multiframe model where each LR observation is assumed to be
an LR displaced version of one given reference frame.

The practical exploitation of the sequential model nevertheless faces a certain number of
bottlenecks. The most stringent one is probably the model dimensionality: because it accounts
for the temporal evolution of each HR frame, the number of variables involved in the sequential
model may become very large. This makes video SR based on sequential models pretty
challenging. As a matter of fact, in comparison with the huge number of papers dealing with
SR, only a few have focused on this particular problem; see [48, 19, 20, 53, 60, 22, 27, 47, 46].
In [48], the authors modeled the dependence between the different images of the sequence as
a Gaussian process and provided an efficient implementation in the Fourier domain. Other
contributions relied on adaptive-filtering techniques; see [19, 20, 53, 60, 22, 27]. In this line
of thought, most of the contributions cited above considered that the HR sequence is ruled
by a state-space sequential model and the authors derived estimation procedures inspired
by the well-known Kalman filter. The standard Kalman updates leading to a prohibitive
complexity in the context of video SR, Elad and coauthors published a series of papers [19,
20, 22] in which they proposed updates having a linear complexity in the problem dimensions.
Their approach is based on some approximations of the model and/or Kalman updates (e.g.,
uniform translational motion [22], noise-free evolution model [20], etc.). In [47, 46], the authors
considered a local approximation of the state-space sequential model by using steering kernel
regression on the LR observations.

In this paper, we provide an approximation-free methodological framework exploiting a
sequential model for video SR. We express the unknown HR sequence as the solution of a
constrained optimization problem and propose an iterative procedure to solve the latter. Our
method is provably convergent (to a local minimum of the problem) and has a tractable
complexity per iteration (i.e., linear in the problem dimensions). The proposed framework en-
compasses two important ingredients of video SR, namely, (i) a precise characterization of the
motion fields linking the successive frames of the sequence and (ii) the exploitation of proper
priors on the unknowns of the problem. These two ingredients lead to additional difficulties (on
top of the large dimensionality) since they typically introduce nonconvex and nonsmooth terms
in the cost function to minimize. We elaborate on these points in the next two paragraphs.

A precise characterization of the model connecting the different images of the HR se-
quence is crucial for the success of video SR. Typically, videos are characterized by nonglobal
motions. This is in contrast with many standard SR models of the literature which assume
global motions (e.g., translation [1], affine [56], or projection [12]), well-suited to still image
reconstruction. The imaging model in video SR thus takes a more involved form and has
to be considered with care. In particular, the estimation of the motion between two con-
secutive frames is usually tantamount to solving an optical-flow problem [4]. Embedding
motion estimation in the SR reconstruction introduces new difficulties: (i) it increases the
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problem dimensionality since two additional unknowns (the displacement in each direction)
have to be estimated for each pixel of the HR images; (ii) it typically introduces nonlinear-
ities in the image formation model. These obstacles are particularly prominent in the case
of a sequential model because of the nested structure of the unknowns dependencies. As a
consequence, until recently, motion estimation has been overlooked and considered as a side
problem in many SR contributions involving either mutiframe or sequential models (see, e.g.,
[39, 21, 19, 20, 53, 60, 23, 22, 27, 51, 35]) with the exception of, e.g., [4, 25, 30, 32].

Interestingly, several authors have emphasized the importance of accurate motion estima-
tion in the video SR process and provided studies of the sensibility of adaptive-filtering tech-
niques to the latter; see [60, 13, 14, 15]. In this paper, we show that the motion estimation can
be included in our video SR problem without significantly increasing the computational cost.

Another important ingredient for the success of video SR is the definition of proper priors
on (some of) the unknowns of the problem. Indeed, video SR is a naturally ill-posed problem:
typical setups impose the observation of (at most) one LR image per frame of the HR sequence;
hence, if the motion between the different frames is unknown, it is easy to see that the number
of variables which have to be estimated is well beyond the number of observations. In order
to tackle this difficulty, a well-known technique consists in resorting to prior information on
the sought quantities. This type of approach has been used extensively (but not only) in the
context of single-image SR, where an HR image has to be reconstructed from one single LR
observation. First methodologies based on prior information date back to the 1970s [26, 16].
Since then, many types of priors have been studied, including Markov random fields [45],
total variation [35, 58, 32], morphological [42], or sparse [57, 41] models, etc. Among the most
effective models in the literature, many rely on the minimization of some nondifferentiable
functions. It is, for example, the case of SR techniques based on sparse representations
where the decomposition coefficients of the sought quantity in a redundant dictionary are
commonly penalized by an ¢ norm; see, e.g., [24]. Another example is total variation where
the ¢1 norm is applied to the gradient of the sought images/motions; see, e.g., [32]. The
introduction of nondifferentiable functions in the SR reconstruction leads to new conundrums
since standard optimization techniques for smooth problems can no longer be applied. As
mentioned previously, we address this problem in the paper as well. Hereafter, we mainly
focus on problems involving an ¢; norm, although other nondifferentiable convex functions
could be processed using a procedure similar to the one exposed in this paper.

In summary, in this paper we propose a methodological framework for video SR based
on a sequential model. We consider the estimation of both a sequence of HR images and
the motion fields relating them, while allowing for some nondifferential terms in the cost
function. Our approach is based on the combination of several modern optimization tools:
fast gradient computation [6], the “alternating direction method of multipliers” (ADMM) [7]
for large-scale nondifferentiable convex problems, and a recent procedure for nonconvex and
nondifferentiable optimization proposed by Attouch et al. in [2, 3]. The resulting algorithm is
ensured to converge to a local minimum of the problem while having a linear complexity per
iteration in the problem dimensions. We illustrate the good behavior of the proposed method
with respect to other techniques of the state of the art in several setups.

The rest of the paper is organized as follows. We introduce the notations used throughout
the paper in section 2. In section 3, we present the sequential model considered in our
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subsequent derivations. In section 4, we express the video SR problem as a constrained
optimization problem and provide a numerical procedure to solve it. The overall procedure is
described in subsection 4.3 whereas two important algorithmic building blocks are presented
in subsections 4.1 and 4.2. The numerical evaluation of the proposed method is carried out
in section 5 for different experimental setups.

2. Notations. The notational conventions adopted in this paper are as follows. Italic
lowercase indicates a scalar quantity, as in a; boldface lowercase (resp., uppercase) indicates
a vector (resp., matrix) quantity, as in a (resp., A). The n-dimensional vector of zeroes and
identity matrix will be written as 0,, and I,,. The ith element of vector a is denoted a(i);
similarly A(i,7) is the element of A located at row ¢ and column j. The exponent * denotes
the transpose operation. A subscript notation, as in a;, will refer to the member of some
sequence {a;}_, = {ag,a1,...,ar}.

Calligraphic letters, such as H, denote functions. The subscript notation H; may either
denote the ith element of a set {H;}; or the ith component of a multidimensional function
H : R™ — R"; the distinction between these two notations is usually clear from the context.
The Jacobian matrix of H : R™ — R" evaluated at &, denoted by VaH(a), is defined as

dayH1(@) -+ OagmyH1(d)
Vat(a) = : : € R™™,
dayHn(@) -+ OapmyHn(d)
where 0, is the partial derivative operator with respect to v. We use the notation V,H*(a)
to denote the transpose of V,H(a).

3. Model. Let x; € R™ be the image at time ¢ of an HR video sequence rearranged into

an n-dimensional vector, with ¢ € {0,...,T}. Let us suppose that we capture noisy and LR
observations y; € R™ with m < n of the HR sequence: Vt € {0,...,T},
(3.1) ye = H(xe) + my,

where 1, € R™ stands for some noise and H : R" — R™ denotes a linear function, which is
the composition of a low-pass filtering and a subsampling operation. We focus on the problem
of recovering the HR sequence {x;}1_, from the LR observations {y;}L .

Without any additional information, this problem is ill-conditioned since the number of
unknowns (that is (74 1)n) is larger than the number of observations (that is (774 1)m). One
way to circumvent this problem is to take into account the relation existing between the HR
images at different time instants. More specifically, as part of a video, we can assume that
two consecutive images obey the following sequential model:'

(3.2) xt = P(Xt41,de+1) + €441,

where P : R x R?® — R" is a “warping” function characterized by a displacement d;y; € R?",
and €41 € R” is some noise. The choice of P is usually motivated by some conservation

'We note that backward sequential models such as (3.2) are common in the computer-vision literature. We
therefore restrict our reasoning to the latter formulation. However, adapting the methodologies derived in
section 4 to a forward sequential model is straightforward.
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property, as for example the preservation of the pixel intensity along the displacement. One
particular instance of a function P, that we will consider in what follows, is based on the
well-known “displaced frame difference” model. More specifically, this model assumes that
the sth component of P(xy,d;) admits the following series representation:

(3.3) Ps(x¢,dy) = Z x¢(1)10i (X () + di(s)),

1€V (x(s)+de(s))

where ¥ : R x R — R is a function returning the spatial position corresponding to index
s, V(x(s) + d¢(s)) denotes a subset of indices corresponding to the “neighborhood” of point
X(s) + d¢(s), and {9}, with ¢; : R x R — R is a family of bidimensional polynomial
interpolation functions. In this case, (3.2)—(3.3) models the fact that x; can be seen as a
displaced version of x;41 plus some additive noise. Let us note that P, as defined in (3.3), is
linear in x; and polynomial in dg; it is thus a bipolynomial function. Let us also mention that
V typically only contains a few elements, that is |V| < n, where V| denotes the cardinality
of V; this observation will play an important role in what follows for the analysis of the
complexity of the proposed SR methodology.

The noise €41 in (3.2) accounts for all the modifications of the image x; which cannot be
inferred from x;41 and dy4+1. This includes pixel occlusions, interpolation errors, or variations
of the scene illumination. Notice that, in practice, the choice of P should be made such
that the residual noise €41 is as small as possible. In particular, if €;11 = 0 (and d;y; is
known), x; is entirely determined from x;.1 Vt. Recovering the whole sequence {x;}1 , is
then tantamount to recovering the last image x7. In such a case, the number of unknowns
is therefore reduced to n and the recovery of the HR sequence from the LR images may be
possible.

Another option to decrease the ill-possedness of the video SR problem consists in restrict-
ing the family of signals to which the “initial condition”? x7 belongs. We will in particular®
consider the case where x7 is assumed to be sparse in some (possibly redundant) dictionary
D € R™™4, that is

(3.4) x7 = Dc for some ¢ € RY such that ||c|o < n,

where ||.||o is the so-called “/y norm,” which returns the number of nonzero coefficients of its
argument. Dealing with |[|.||o leads to combinatorial optimization problems. Hereafter we will
thus consider the ¢; norm, which is a well-known surrogate to the ¢y norm. In particular,
if the sparsity of the sought vector is large enough, there exists an equivalence between the
solution of the problems involving the ¢y and ¢; norms; see [24].

Finally, let us mention that the displacement d; between two successive images is rarely
known in practice. It must therefore be inferred from the received LR images {y;}Z . This
may seem to be counterproductive since the estimation of d; implies an increase of the num-
ber of unknowns of 2n elements per time step. One way to circumvent this problem consists

2We remind the reader that we consider a backward sequential model.
3The sparsity constraints could be imposed on every x; without introducing any conceptual problems in
the methodology exposed in section 4.
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again in constraining d; to belong to a restricted family of signals. In this paper, we con-
sider an implicit restriction by enforcing some nonnegative function of d; to be small. More
specifically, we assume that the sought displacement is such that R(G*d;) is “small,” where
G = [g1,...,gn] € R?*" is some linear “analysis” operator and R : R* — R is a nonnegative
function. We note that this approach is commonly adopted in the computer-vision literature
in which many options for R and G have been proposed; see [5]. This approach was also used
in the “multiframe” setting [35, 32] where the motions between the reference HR frame and
the LR observations were penalized to have a small total variation (TV) norm. In what fol-
lows, we will focus on the following choice for G and R: the elements of G*d; will correspond
to the spatial gradients of (an interpolation of) d; at each point of the pixel grid; R(G*d;)

takes the form
p

2

(35) G dt ZW Z gjdt)2 , D > 0,

JjES;

where w is defined as a vector of weights and the S;’s denote disjoint subsets of elements of
{1,...,h}. Index i represents a location on the pixel grid. The subset S; typically gathers
4 elements corresponding to the 2 spatial gradients of the 2 components of motion d; at the
location indexed by ¢. For p = 2, these choices are equivalent to constraining the spatial
gradient of the displacement field d; by a quadratic penalization [54], whereas the case p =1
corresponds to the weighted TV approach suggested in [59].

In summary, (3.1)—(3.4) together with the definition of G and R specify our prior/observa-
tion model. In the next section, we will present a low-complexity methodology exploiting this
model to recover the HR sequence from the collected observations {Yt}tho- More specifically,
we will assume that the unknowns of the problem include the HR sequence {x;}L,, the
sequential noise {€;}7;, the displacements {d;}~_;, and the decomposition vector c. All the
other parameters of the problem will be supposed to be known, although they could easily be
included as additional unknowns without introducing any conceptual problem in the proposed
methodology.

4. The estimation procedure. In this section, we expose our methodology to estimate
the HR sequence by exploiting the model described in section 3. Our approach is based on
the resolution of a constrained optimization problem. We introduce the following shorthand
notations: x £ {x;}1_,, € = {&}L;, and d = {d;}]_;. Our SR reconstruction procedure
relies on the following constrained optimization problem:

; {Xt =P(x¢41,dig1) + €41, 0<t<T—1,

(4.1) argmin J(x, €,d, c)

(x,€,d,c) XT = DC,

where

T T
J(x,€,d;c) Z IH(xe) = yell3 + 1) llecllh +az ) R(G ) + asle]}

t=1 t=1
for some o; > 0, j € {1, 2,3}, and p > 0. Let us make a few comments about (4.1). The first
constraint ensures that the images of the HR sequence verify the sequential model (3.2); the
second enforces that prior model (3.4) is satisfied. Each term in the cost function J(x,€,d, c)
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has a clear physical meaning: the first term penalizes the discrepancies between the predicted
and the received observations; the second penalizes the noise on the sequential model; the third
enforces that the displacement has some regularity; and the last one constrains c¢ to have some
desirable properties (depending on the choice of p). For example, setting p € [0, 1] typically
promotes the sparsity of c; see [24]. Because sparsity has been revealed to be a good prior in a
number of works, in the following our main objective is to find a solution to (4.1) with p = 1.

Problem (4.1) involves a huge number of unknowns (namely, (47" + 1)n + ¢ variables if
X, €,d, ¢ have to be estimated). Hence, solving (4.1) may be critical even for reasonable prob-
lem sizes: for instance, considering images of n = 2% x 2% pixels, a nonredundant dictionary,
ie., ¢ =n, and a sequence length T = 2*, we have that the number of variables involved in
the optimization problem grows up to roughly 222. Clearly, such a high-dimensional problem
can only be addressed by specifically dedicated procedures. In subsection 4.3, we propose
an overall methodology to solve (4.1) efficiently with p = 1. Our approach is based on the
combination of several modern optimization tools, described in subsections 4.1 and 4.2. More
specifically, the building blocks presented in subsections 4.1 and 4.2 tackle simplified versions
of problem (4.1), which appear as intermediate steps in the overall procedure described in
section 4.3. We briefly comment on these intermediate problems in the next paragraphs.

In section 4.1, we consider the case where p = 2 in (4.1), that is all the functions are
differentiable. In such a case, we show that the gradient of the cost function associated with an
(equivalent) unconstrained version of (4.1) can be evaluated efficiently by resorting to optimal
control techniques [6]. More specifically, we emphasize that the complexity associated with
the evaluation of the gradient of the cost function remains linear in the problem dimensions,
for many setups of practical interest.

In section 4.2, we focus on the case where d is known but p = 1. The corresponding
optimization problem is then convex but not differentiable. Building on our derivations in
section 4.1, we emphasize that this type of problem can be nicely addressed by resorting to
the so-called ADMM [7], a modern optimization technique proposed to handle large-scale
nondifferentiable optimization problems.

Finally, in section 4.3, we consider the general problem (4.1), where x,€,d, c have to be
estimated and p = 1. In this case, (4.1) is nonconvex (because the term P(x;y1,d¢+1) appear-
ing in the constraints is bipolynomial) and nondifferentiable. In order to address this problem,
we resort to an optimization procedure introduced by Attouch et al. [2] and Attouch, Bolte,
and Svaiter [3] and particularized in [43] to multiframe SR. The procedure is iterative and ex-
ploits the building blocks derived in sections 4.1 and 4.2 to solve intermediate problems. The
complexity per iteration is linear in the problem dimensions. Moreover, from the arguments
exposed in [43], it can be shown that the proposed procedure is convergent to a critical point
of the problem.

4.1. The first building block. In this section, we assume that p = 2 (so that all the
functions appearing in (4.1) are differentiable) and show that an efficient resolution of (4.1)
via gradient descent algorithms exists. Our approach is based on fast gradient evaluation
techniques as exposed in [6].

In order to present our methodology, we first reformulate (4.1) as an (equivalent) uncon-
strained problem. Notice that, because of the constraints in problem (4.1), any x; can be
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expressed as a deterministic function of ¢ and {ey,dy }7_, +1- In other words, there exists a
function Q(e,d,c) : RT™ x R?T™ x R? — R(T*+D" guch that, given €,d, and ¢, x = Q(€,d, c)
is the unique vector satisfying the constraints in (4.1). As a consequence, (4.1) can also be
equivalently expressed as

(4.2) argmin J (€,d, c),
(e,d,c)

where

j(eydyc) £ j(X = Q(67d7c)7€7dac)7

T T
=D IH(Q(e,d.)) =yl +ar ) llecly

t=0 t=1

T
(4.3) +az > R(G*dy) + asllc]?,
t=1
and Qy(e,d,c) is the restriction of Q(e,d,c) to x;.

Since p = 2, (4.2) is a smooth unconstrained minimization problem and can thus be solved
by any procedure belonging to the family of gradient descent algorithms. At this point, let
us make two remarks: (i) J(e,d,c) usually has an intricate structure and its gradient does
therefore not have any simple analytical expression; (ii) the computation of the gradient of
J(e,d,c) via finite differences is out of reach for the considered problem because it would
require us to evaluate the cost function twice as many times as the (huge!) number of variables.

As a consequence, the main bottleneck for solving (4.2) lies in the tractable evaluation
of the gradient of J(€,d,c). We emphasize in Appendix A that the particular structure of
J(€,d,c) enables the use of a specific methodology with a complexity scaling linearly with
the problem dimensions. More specifically, let

Go(x0) £ [|H(x0) — yoll3,
(4.4) Gi(x¢, €0, dy) 2 [|H(xe) — yell3 + onlled] + aeR(G*dy) for 1<t <T -1,
Gr(xr, er,dr,c) £ |H(xr) — yrll3 + ailler|) + aaR(G*dr) + asllc]?.

Using the notation Gr(er,dr,c) = Gr(xr = Dc,er, dr,c), the elements of the gradient of
J(e,d,c) at (¢/,d’,c’) can then be evaluated as follows:

thj((—:,, dlv C/) = vdtp* (X;, d;)Ct—l + vdtgt(x; 627 d;)v
(4'5) Vetj(e', dl? C,) =G¢1 T vetgt(xgv 627 d:ﬁ)7
vcj((_:/? d,7 C,) - D*CT + ngT(e’/T7 d’{Tu C/)7
where the variables x}, €}, d}, and ¢/ must satisfy the constraints of problem (4.1), that is

x = Dd/,
(4.6) AP / B
Xt_P(XtJ,-b t+1)+€t+17 t—T—l,...,O,
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and the sequence of “adjoint” variables {¢,}, obeys the following recursion:

CO = VgO(XIO)7
(4.7 ¢, =V, P*(x},d))¢ 1 + Vi, Ge(x), €5,d)), t=1,....T—1,
CT = VXTP* (X/T7 d/T)CT—l + VngT(X/T, 6/T7 d’{l“v C/)'

Expressions in (4.5) together with recursions (4.6) and (4.7) provide an efficient way to evaluate
the gradient of J(€,d,c). The overall methodology can be understood as a 3-step procedure:
(i) given some values of €,d’, and ¢/, evaluate {x}}L_, with recursion (4.6); (ii) use the value
of {x}}L, to evaluate the adjoint variables {¢,}, from (4.7); (iii) compute the gradient of
J(e,d,c) by using (4.5). Note that the gradients appearing in the right-hand side of (4.5) and
(4.7) typically have simple analytical expressions and are thus straightforward to evaluate.

It is easy to see that the complexity induced by this methodology scales (at worst) as
O(n*T + nq) since it only involves matrix-vector multiplications, with matrices of dimension
n X n or n X q. In practice, this complexity can usually be reduced to O(nT + q), or simply
to O(nT) in the case of a nonredundant dictionary. This linearity in the problem dimensions
occurs if the matrices involved in (3.4), (4.5), and (4.7) are typically very sparse and/or rely
on fast transforms of linear complexity.” In the (typical) example (3.3) considered in this
paper, we clearly obtain this linear complexity since |V(x(s) + d¢(s))| < n. In the rest of
the paper, we focus on model (3.3) and choose a dictionary so that the complexity related to
(4.5)—(4.7) is linear in the problem dimensions.

Before concluding this section, let us make a remark to highlight some connections with
some previous works which considered the “Kalman smoother” update rules as the starting
point of their video SR method; see [19]. First notice that, assuming d is known, (4.2) with
p = 2 corresponds to the “maximum a posteriori” (MAP) estimation problem associated with
the following probabilistic (backward) state-evolution model:

x7 ~ N (0, angD*),
(48) Xt N(P(Xt+1, dt+1), Oél_lIn),
Yt ~ N(H(xt)71m)7

where v ~ A (m,T") indicates that v is distributed according to a multivariate normal distri-
bution with mean m and covariance I'.

For such a model, it is well known that the Kalman smoother can compute exactly the
solution of (4.2) in a finite number of steps, namely, one forward and one backward recursions;
see, e.g., [34, Chapter 20]. The Kalman smoother involves the update of a length-n mean
vector and an n X n covariance matrix at each step of the two recursions; moreover, the
evaluation of these quantities requires the inversion of an n X n matrix. Hence, the Kalman

4This is the case for any nonredundant wavelet basis, which will induce an overall complexity of O(nT). Fast
transforms for sparse redundant dictionaries such as curvelets frames also exist but imply a slight complexity
overload since the matrix-vector multiplication scales in this case as O(nlogn), yielding an overall complexity
of O(n(T + logn)).
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smoother exhibits a computational complexity scaling as® O(n®T). Since this complexity
is prohibitive for most practical setups, several approximations of the Kalman updates for
video SR have been proposed in [19]. On the other hand, the procedure described in this
section provides an alternative, approximation-free, solution to the MAP problem. Indeed,
since (4.2) with p = 2 is a differentiable problem, it can be solved with a simple gradient
descent method. More specifically, we can apply the methodology described in this section to
efficiently compute the gradient of 7 (€, d, c) with respect to € and ¢ (using the two last rows
of (4.5)). The complexity of this method then only scales as O(nT’) per iteration. Moreover,
because J (€, d, c) is strictly convex in (€, c), this type of algorithm is ensured to converge to
the global minimum of the problem. Hence, if the descent algorithm has converged (close) to
the minimum after a reasonable number of iterations, the proposed methodology drastically
reduces the complexity necessary to obtain the MAP solution as compared to a Kalman
smoother.

4.2. The second building block. In this section, we address problem (4.1) with p = 1
but assume that d is known (and thus therefore no longer appears as an optimization variable
in (4.1)). Particularizing (4.1) to these working hypotheses, we obtain the following convex
but nondifferentiable problem:

(49) arg min j(X . C) s.t. { Xt = P(Xt+17dt+1) + €t+1, 0 <t< T— 17
(x60) xr = De,
where
T T
JT(x,€,¢) 2 [ H(xe) = yell5 + 01> llerlls + aslle]s.
t=0 t=1

This problem is convex but nondifferentiable. As previously, the main bottleneck for its
resolution lies in its high dimensionality. This, in turn, forces us to resort to low-complexity
optimization procedures. We show hereafter, that a complexity scaling linearly with the
problem dimensions is possible by using the ADMM. ADMM has recently emerged in the
optimization community as a method to address large-scale optimization problems. Among
the particular assets of this type of method, let us mention (i) its robustness (the convergence
to a global minimum is ensured under very mild conditions); (ii) its rapid convergence to an
acceptable accuracy (typically a few tens of iterations is sufficient). We refer the reader to
Appendix B for a short description of the ADMM framework.

In order to derive the ADMM recursions, we first need to reformulate (4.9) in the standard
form (B.1) in Appendix B. Letting

Y

x7= Dc

(4.10) = {(x,e,c)

Xt = P(Xpp1,dg1) + €41, 0<t<T— 1}

5We note that the complexity can be reduced to O(T(m?* +mn)) by using some computational tricks such
as the well-known Woodbury matrix identity; see, e.g., [34, Lemma 4.1]. However, the latter still remain too
costly for typical problem sizes.
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(4.9) can be reexpressed as

T T
arg min ZHH(Xt) —yt|!§+aleétHl + asllef

(x,€,c)EN =0 —1

(&,8)eRrRnT+a
€
s.t. {
c

Here, we have added two new variables to the problem, € and ¢, which are counterbalanced
by the inclusion of two new constraints. Using the formalism exposed in Appendix B with
21 = (x,€,¢), 29 = (£,¢), Z; = Q, and Z5 = R" 19, we obtain the following ADMM
recursions:

Il
o M

(4.11) (x*+D) D) (1)) — argmin £F) (x, €, ¢)
ot xt = P(Xe+1,de41) + €41, 0<t<T -1,
"] xr = Dec,
(4.12) EEH ) = argming, [|&; + 2(111 He(kH) &+ ugf)H%,
' e+ = argming ||y + £ Hc(kH) &+ ul H2=
113 ug:-i—l) (k) + egk-ﬁ-l) . éikﬂ),
(4.13) b)) _ gk) L (k) _ i),

where p1, p3 > 0 and we have introduced the function
(414)  LO(xe0) ZHH x)) = yill3 + 5l = &® a3+ Blle — e ud .

Equations (4.11), (4.12), and (4.13) correspond, respectively, to expressions (B.2), (B.3), and
(B.4) in Appendix B.

Let us make the following remarks about the different steps of the ADMM procedure.
First, problem (4.11) has the same structural form as the problem addressed in section 4.1;
in particular, all the terms of the cost function appearing in (4.11) are differentiable while
the set of constraints imposed on x, €,d, and c is strictly the same. We can thus apply the
methodology described in section 4.1 to solve this problem via a gradient descent algorithm,
with a complexity per iteration scaling as O(nT'). Interestingly, let us mention that, under
very mild conditions, the convergence of ADMM is still guaranteed if the minimizations in
(4.11)—(4.12) are not performed exactly; see, e.g., [18, Theorem 8]. This suggests that the
number of gradient steps carried out to search for the minimum of (4.11) can be rather limited
without affecting the convergence of the overall ADMM process.

Second, the optimization problems specified in (4.12) have a very simple analytical solu-
tion. In fact the right-hand sides of (4.12) correspond to the definition of the proximal operator
of the ¢; norm. The latter has been extensively studied in the literature (see, e.g., [38, sec-
tion 6.5.2]) and possesses a simple analytical solution based on soft-thresholding operators.
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In particular, we have

(4.15) ‘ °1

where
a—X ifa> A,
(4.16) softy (a) = a+ X ifa< =)
0 otherwise.

We note that the solution of (4.12) is typically sparse since the soft-thresholding operator
(4.16) enforces that the small coefficients are equal to zero. Moreover, we see from (4.15) that
the complexity of this ADMM step clearly scales as O(nT + q).

As a conclusion, since the last step (4.13) of the procedure only involves vector additions,
the particularization of ADMM to our problem leads to an algorithm exhibiting a complexity
per iteration scaling linearly in the problem dimensions.

4.3. The overall procedure. Let us now concentrate our attention on our target problem,
that is (4.1) with p = 1, where all the variables x, c, €, d have to be estimated. The
cost function then contains both nondifferentiable and nonconvex terms. In such a case,
ensuring the convergence to a global minimum is usually out of reach for any deterministic
optimization procedure. In this section, we consider an optimization method proposed in [2, 3]
and particularized to multiframe SR problems in [43]. This procedure addresses optimization
problems involving a cost function satisfying the so-called “Kurdyca—Lojasiewicz” property
and is guaranteed to converge to a critical point of the latter under mild conditions. We
refer the reader to [2, 3] for more details about Kurdyca—Lojasiewicz functions. Here, we just
mention that functions made up of the composition of piecewise polynomial functions obey
the Kurdyca—Lojasiewicz property. Scrutinizing the structure of (4.1) and taking (3.3) into
account, it is easy to see that our cost function is piecewise polynomial; the optimization
framework developed in [2, 3] therefore applies.

Our methodology obeys a 2-step recursion which follows the same lines as the procedure
presented in [43]. The building blocks described in subsections 4.1 and 4.2 are used to provide
an efficient implementation of the intermediate problems appearing in these two steps. To
express the procedure recursions, we focus on the unconstrained formulation (4.2) (with p = 1)
of our general optimization problem (4.1). The first step of the procedure solves the following
problem:

(4.17) (€D ) = argmin J (e,d®), c) + yC(e — €™, c — ¢,
(e,¢)

where v > 0, J is the cost function in (4.3) with p = 1, and C : R"" x R? — R, is a
nonnegative proper lower-semicontinuous convex function such that C(0,7,0,) = 0. It thus
consists in minimizing the (penalized) cost function J(€,d,c) over the subset of variables
(€,¢); the penalizing term C plays the role of a “cost-to-move” function which prevents the
new iterate (e(kH),c(kH)) from differing too much from the previous one. In what follows,
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we will focus on the following penalizing term:°

T
(4.18) Cle—e®.c—c®) =3 [ (e — &)1 + e — W,

t=1
where H € R™ " is a wavelet basis. The operational meaning of this cost-to-move function is
as follows: the ¢; norm enforces its argument to be sparse; hence, the second term in (4.18)
ensures that the number of nonzero coefficients in ¢**1) does not differ too much from the one
in ¢®) while the first term plays the same role for the wavelet coefficients of egkﬂ) —egk). Using
this type of cost-to-move is not mandatory for the convergence of the proposed procedure.
However, it has been shown empirically in [43] that it is well-suited to avoid some undesirable
local minima of the cost function.”

In the second step of the recursion, we update the velocity field d as

T
(4.19) d**+Y = arg min B(d, d®) + ay Z R(G*dy),
d t=1

where B(d,d®)) is a quadratic approximation® of

T
B(d) = Z “H(Qt(e(k+1)7 d, c(k+1))) - Yt”%,
t=0
that is
(k)
(4.20) B(d,d®™) £ B(dW) + V4B (d¥)(d — d®) + C“Tnd —d®Z, o >0,

The choice of a(*) is of course not arbitrary and should be made so that the convergence of the
procedure is ensured. We elaborate on this point further in this section. For now, let us first
discuss the practical implementation and complexity of recursions (4.17)—(4.19). It should be
noticed that the building blocks presented in sections 4.1 and 4.2 can be exploited to solve these
steps efficiently. Indeed, problem (4.17) has the same structural form as the one considered in
(4.9): the cost function consists in a quadratic term plus a set of convex but nondifferentiable
terms. We can thus use the ADMM procedure described in section 4.2 to address it. In
the same way, we see from definition (4.20) that the cost function (4.19) is made up of a
quadratic term plus some nondifferentiable function s Zthl R(G*d;). Hence, the ADMM
procedure described in section 4.2 can also be applied here to solve (4.19). In comparison to
our exposition in section 4.2, only the proximal operators of the nondifferentiable terms will
change when ADMM is applied to (4.17) and (4.19). In particular, the computation of any
gradient of the differentiable part of the cost functions can be efficiently evaluated via the
procedure described in section 4.1. We particularize the expression of the proximal operators
appearing in the ADMM implementation of (4.17)—(4.19) in Appendix C.2. As previously,

51n theory, the ¢; norm should be substituted for by a smooth approximation to prove convergence towards
a critical point of the cost function, as was done in [43]. In practice, we note that this substitution does not
impact convergence.

"An intuitive explanation is that the cost-to-move (4.18) induces a “coarse-to-grain” refinement of the
unknowns which is usually beneficial in computer-vision problems; see details in [43].

8Note that B(d) is similar to the first term of the cost function in (4.3).
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it turns out that the implementation of the latter only requires a linear complexity. The
complexity of each iteration of (4.17), (4.19) is thus once again linear.

To conclude this section, let us discuss the convergence of the proposed procedure. In [43,
Theorem 1], the authors proved that if J (e, d, c) satisfies the Kurdyca—Lojasiewicz property
and the a(*)’s are properly selected, the sequence defined in (4.17)(4.19) is either unbounded
or converges to a critical point of J(€,d,c). A procedure to properly select factors a®) is
exposed in [43, section 2.3] and is easy to implement in practice. Particularized to the setup
considered in this paper, this procedure reads as follows: select a®) = 2i¢ with ¢ > 0 and
with ¢ the smallest positive integer such that

B(d*+D) — Ba®) < %”d (1) _ g2 4 v, B85(d®)(dk+D) — a®)
(4.21) + as Z ( R(G*d) R(G*dﬁk“))) .

As mentioned at the beginning of the section, the cost function (€, d, c) is piecewise polyno-
mial and therefore satisfies the Kurdyca—Lojasiewicz property. Hence, the sequence defined by
(4.17), (4.19) with factor selection (4.21) is either unbounded or converges to a critical point of
J(e,d,c). Finally, let us note that the boundedness of {(e®) d*), c(¥))}, is usually observed
in practice or is easy to enforce by adding box constraints to the optimization problem.

5. Experiments. In this section, we provide an experimental validation of the SR proce-
dure proposed in section 4.3. We focus on the problem of recovering a sequence of HR natural
images from blurry and LR observations. In section 5.1, we provide a precise definition of the
model parameters used to run our algorithms. In section 5.2, we describe several algorithms
of the state of the art which will serve as points of comparison with the proposed approach.
In sections 5.3 and 5.4, we respectively describe the databases and the figures of merit which
will be used in our experiments. Finally, a discussion of the performance of the proposed SR
methodology is provided in section 5.5

5.1. Specification of the model and algorithm parameters. We first discuss the choice
of the parameters appearing in the model described in section 3. In particular, we specify the
definitions of H, P, D, G, and R. We then provide some details about the parameters used
in our algorithm.

The observation model H is defined as the composition of a low-pass filtering and down-
sampling operation. The low-pass filter is assumed to model the blurring effect induced by the
camera transfer function. In our simulations, we use an approximation of a Gaussian kernel
with a standard deviation equal to 1.12, as proposed in [8]. A down-sampling factor equal to
2 is considered.

The operator P is supposed to model a “displaced frame difference”: P is thus defined as
in (3.3) with the interpolation functions {v;}" ; equal to bidimensional cubic cardinal splines
[52]. This representation offers a reasonable accuracy with a complexity scaling linearly with
the image dimension; see Appendix C.1 for further details.

The dictionary D is chosen so that natural images have a sparse representation as a
combination of a few of its columns. Several choices of such dictionaries have been proposed
in the literature; see, e.g., [33, 41]. Hereafter, we consider a dictionary made up of discrete
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real-valued curvelets [11]; curvelets are known to yield sparse representations of piecewise
smooth functions. The choice of a curvelet dictionary is also motivated by the existence of
fast algorithms for the computation of the product between D and some vector (see [10]): this
transform is based on a fast Fourier transform and its complexity”’ scales as O(nlogn).

Matrix H appearing in the cost-to-move function in (4.18) is chosen to be a Haar wavelet
basis.'’ In practice, we did not observe a significant difference in our results by using other
types of wavelets; we thus essentially consider Haar wavelets for simplicity purposes.

To complete our discussion, let us elaborate on the choice of G and R, characterizing
the regularization imposed on the displacement field d;. In our simulations, we wish to
enforce either a global or a piecewise regularity of the motion. We proceed as follows. The
spatial derivatives of the motion are approximated by a “finite difference” scheme: each finite
difference corresponds to a particular element of the matrix-vector product G*d; (matrix G
thus contains “+1” elements located at proper positions). The regularity of the motion field
is then enforced by constraining the function R(G*d;) to be small. In our experimentations,
we choose R to be defined as in (3.5) with a weighting vector w as in [55]. Further details are
provided in Appendix C.1.

Besides, we notice that, although we have presented our SR procedure in the case of a
monochannel image-sequence observation in section 4, its extension to a multichannel setting
(e.g., when 3-channel color images are available) is straightforward and will be considered in
our simulations.

We now specify the choice of the algorithm parameters. As exposed earlier, we rely
on the recursion (4.17)—(4.19) described in section 4.3 to search for a critical point of the
cost function in (4.1) with p = 1. Each step of the recursion (4.17)—(4.19) is solved via an
ADMM procedure. Details on the ADMM steps are given in Appendix C.2. The ADMM
solvers involve minimizations by a gradient descent procedure. In our implementation, we
choose a quasi-Newton descent method adapted to our high-dimensional problem, namely, a
limited-memory Broyden—Fletcher—Goldfarb—Shanno (L-BFGS) procedure with a line-search
routine based on the strong Wolf conditions [37]. We stop the ADMM recursions after 20
iterations and the global 2-step recursions after 20 iterations, since we observed no significant
improvements of the results for a larger number of iterations.

The superresolved images x;’s are initialized by Lanczos interpolation of their LR counter-
parts. Motion fields are initialized with an upscaled optic-flow estimate obtained by applying
algorithm [55] on the LR observations. To perform a fair comparison with the multiframe SR
algorithm of Mitzel et al. [35] described in the next section, we also ran our algorithm with
an initial motion field computed with the optic-flow algorithm [59]. For both initializations,
the upscaling from the LR optic-flow estimate to the HR motion field is done with a Lanczos
interpolation. The values of the other parameters of our algorithm are given in Table 1. These
parameters have been tuned experimentally to lead to a reasonable trade-off between visual

I

inspection and error measurements for the data-set benchmark presented in section 5.3

9As mentioned earlier, a linear complexity can be preserved by using, for example, a wavelet basis instead
of a curvelet frame.

10We note that evaluation of products H or H* only requires a linear complexity since they can be imple-
mented by fast wavelet transforms [33, Chapter 7].
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Table 1
Algorithm parameter setting. Parameters aa, a2, and as appear in the cost function (4.1). Parameters ~y
and o' specify the 2 steps (4.17) and (4.19). Parameters p1, pa, ps, and p are auziliary factors used in the
ADMM recursions.

a1 P1 a2 P2 s 03 5 p a®
be-1 | 1le2 | 8e3 | lel | lel | 1le-2 | 1e0 | 1e0 | 2e2

5.2. Algorithm benchmark. The assessment of the proposed algorithm relies on a com-

parison with a benchmark of three state-of-the-art methods:
e the single-frame SR algorithm of Peleg and Elad, 2014 [41],
e the kernel-regression SR algorithm of Takeda et al., 2009 [47, 46],
e the multi-frame SR algorithm of Mitzel et al., 2009 [35].

These algorithms are adapted to the SR of videos exhibiting nonhomogeneous displace-
ments. Moreover, each of these three algorithms is a state of-the-art method representing a
class of SR algorithms. The algorithm of Peleg et al., 2014, implements a single-frame SR
method based on a statistical learning procedure with sparse representations; the algorithm by
Takeda et al., 2009, is an SR method based on a “multidimensional kernel regression” fitting
the LR observations; the algorithm of Mitzel et al., 2009, implements a multiframe SR method
using a quadratic relaxation scheme for high-accuracy optic-flow estimation [59]. Finally, we
also compare the performance obtained with the proposed method with two standard spatial
interpolation techniques, namely,

e the basic nearest neighbor upscaling (block interpolation),

e Lanczos interpolation [50].
Note that in order to treat color image sequences, algorithms only supporting gray-level images
are run independently on the three spectral bands.

5.3. Data-set benchmark. We evaluate the performance of the algorithms using a bench-
mark of three image sequences:

e A synthetic sequence from the MPI Sintel data set [9]. This recent data set, which
is derived from the open source three-dimensional animated short film, was originally
created for the evaluation of optical flows. The synthesized image sequences are realis-
tic and particularly challenging: on the one hand, displacement fields are characterized
by large amplitudes, discontinuities, blur or defocus effects; on the other hand, the im-
age sequence presents many occlusions, specular reflections, or atmospheric effects. In
our simulations, we focus on a region of interest of 436 x 512 pixels and on the first 8
images. The first and last images of the “bandage” data-set sequence are displayed in
Figure 1. In the following, we will refer to this sequence as data set #1.

e A real sample of the standard “foreman” video.'' In our simulations, we focus on a
region of interest of 256 x 256 pixels and on the 10 first images. The first and last
images of this data set are displayed in Figure 2. In the following, we will refer to this
sequence as data set #2.

H1mage sequences are part of the Derf Collection, which can be downloaded at https://media.xiph.org/
video/derf (2015).


https://media.xiph.org/video/derf
https://media.xiph.org/video/derf
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Figure 3. Data set #3: first and last frames of the “football” sequence.

e A real sample of the challenging “football” video'', which exhibits nonhomogeneous
and large displacements, as well as multiple occlusions. In our simulations, we focus
on a region of interest of 256 x 256 pixels and on the 10 first images. The first and
last images of this data set are displayed in Figure 3. In the following, we will refer to
this sequence as data set #3.
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The images of these sequences are composed of three spectral bands, each one is coded in 8
bits. We create the LR images by applying the function H on these sequences. This function
first filters the discrete signal by a Gaussian kernel of standard deviation equal to 1.12 and
then down samples the result by a factor of 2; see [8].

5.4. Evaluation procedure. The performance of the algorithms is assessed in terms of
reconstruction of the superresolved image and estimation of the motion field. We describe
the figures of merit used in our assessments hereafter. Let {%;}L; (resp., {d;}~_,) denote the
estimated image sequence (resp., displacements) and {x{"*¢}I_ (resp., {d{"“¢}L ) the corre-
sponding ground truth. Standard criteria [36] to measure the image sequence reconstruction
accuracy are the peak signal to noise ratio (PSNR) at time ¢,

nxi" oo

e = %¢l2”

and the correlation coefficient (CC) at time ¢,

CC(t) _ (Xirue - :u’xirue)*(i{t - N)Act)
137 — prue |2 [[%e — pis, |12

where we have denoted the arithmetic mean of vectors %; and x!"“¢ by g, and fhxtrue. We
evaluate the accuracy of the estimated motion fields with the time-averaged mean end point
error (MEPE),

T
- 1 true I
MEPE = — > lldfre — dy|la,
t=1
and the time-averaged mean Barron angular error (MBAE) in degrees [5],

r n true 3 true g
MBAE = ! Z Z arcos 14 di"¢(s)dy(s) + di"™°(s + n)d¢(s +n)

=4 \/(1 +dy(s)2 + dy(s +n)2) (14 diree(s)2 + dirue(s +n)?)

)

where we have adopted the convention that the two n-dimensional components of motion have
been sorted one after the other in vectors d; and di"c.

In order to compare the different algorithms (algorithm [47] does not support large images
and excludes pixels at the image border), the criteria PSNR and CC are evaluated on a spatial
window of size 240 x 240 cropped in the image sequences.

5.5. Results and discussion. Table 2 presents the accuracy of the different algorithms in
terms of PSNR and CC. We evaluated these criteria at t = 5 for data set #1 and at ¢t = 7 for
data sets #2 and #3. We first note that our SR method yields better figures of merit than
the other methods for the different data sets of the benchmark. It improves slightly the CC
and substantially the PSNR (more than a unit) for each data-set configuration. Second, the
estimates released by the proposed approach seem to achieve a good quality level irrespective
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Table 2
Accuracy of super-resolved image estimates in terms of PSNR and CC at time t.
PSNR(t) CC(t)
Set # 1 | Set # 2 | Set ## 3 | Set # 1 | Set # 2 | Set # 3
t=H t=7 t=7 t=5 t=7 t=7
Nearest neighbor 27.236 22.639 22.656 0.9771 0.9648 0.9556
Lanczos interpolation [50] 27.845 24.571 23.040 0.9800 0.9775 0.9579
Single-frame SR [41] 28.359 32.518 23.971 0.9815 0.9949 0.9684
Kernel-regression SR [47, 46] 28.944 33.275 23.394 0.9838 0.9957 0.9643
Multiframe SR [35] 29.935 32.295 21.948 0.9844 0.9939 0.9491
Proposed (optic-flow init. [59]) | 30.634 | 35.027 | 25.007 0.9868 | 0.9969 | 0.9750
Proposed (optic-flow init. [55]) | 30.790 | 34.305 | 25.302 | 0.9872 | 0.9963 | 0.9767

of the considered data set: on the contrary, the multiframe SR algorithm [35] performs fairly
well on data set #1 but its performance collapses on data set #3; the kernel-regression SR
algorithm [47, 46] obtains good results for data set #2 while yielding only a slight increase of
the accuracy with respect to a Lanczos interpolation on data set #3; the single-frame SR algo-
rithm [41] has a good behavior for data set #3 but is less competitive for data set #1. Third,
the performance of our algorithm seems to be comparable for different motion initializations,
in particular for initial motion fields obtained from the optic-flow algorithms of [55] or [59].

The improvement brought by the proposed method can also be seen by a visual inspection
of the reconstructed images in Figures 4, 5, 6, and 7. We can first underline the enhance-
ment provided by the inclusion of some motion information in the SR reconstruction process
by comparing the estimates released by the single-frame and the multiframe/sequential algo-
rithms. In Figures 4 and 6, one can notice that the estimated contours and the texture are
oversmoothed if no motion information is included. This is, for example, visible by inspecting
the fuzzy girl’s eyebrow or the smoothed scales of the little dragon in Figure 4, distinguishing
the tongue of the foreman or analyzing the texture of the grass field of the football game in
Figure 6. In comparison, our algorithm enhances the reconstruction accuracy of these details
as is visible in Figures 5 and 7. The drawback of including motion is that, as can be noticed
for the little dragon, errors in motion discontinuity estimation may induce imprecision on the
contours and lead to some undesirable oscillations.

Although not as accurate as the proposed method, we note the good performance of the
single-frame SR algorithm proposed in [41]. Clearly, it is competitive with other state-of-
the-art approaches exploiting motion information. This is probably due to the relevance of
the sparse prior employed by the single-frame SR algorithm [41]. This is particularly striking
when the motion in the video is too difficult to exploit by the multiframe or kernel-regression
SR algorithms, as shown for the challenging football sequence in Figures 6 and 7. Let us also
mention that results obtained with a kernel-regression SR strategy reveal a slight enhancement
in comparison to standard spatial interpolation techniques, which is probably induced by the
implicit introduction of the motion information via the modeling of the local spatiotemporal
structures of the sequence.

Our experiments also emphasize several examples where a sequential SR setup can solve
some reconstruction ambiguities which can be difficult to treat in a multiframe framework.
In Figures 5 and 7, some erroneous reconstructions, which do not appear in the proposed
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Figure 4. Single-image SR estimates for data set #1. Details of the SR images obtained with nearest
neighbor strategy (first row), Lanczos interpolation (second row), and the learning algorithm proposed in [41]
(third row).

method, can be noticed in the multiframe estimates: for example, artifacts in the girl’s eye in
Figure 5, deformations of the foreman’s tongue and the fuzziness of the stripes of the football
player’s trousers in Figure 7. Indeed, matching all the images of the sequence with a reference
frame is often a more difficult task than estimating motions between consecutive frames. In
the former situation, motion estimation has to deal with large displacements between distant
frames whereas, in the latter setup, the problem simplifies to the estimation of a succession of
small displacements. In other words, an SR multiframe setup will try to match images of the
sequence which could apparently seem independent, with the potential drawback of estimating
erroneous structures. On the other hand, an SR sequential setup propagates information
through consecutive frames and may better succeed in modeling the overall dependences in
the image sequence. One could nevertheless argue that the estimation of interframe motions
could also lead to error propagation if the motion estimates are inaccurate. This is not what
we observed in our simulations: motion errors are usually absorbed by the error terms e,
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Figure 5. Multiframe and sequential SR estimates for data set #1. Details of the SR images obtained
with the multiframes algorithms of [A7, 46] (first row) or [35] (second row), and with the proposed sequential
algorithm (third row) in comparison to ground truth (fourth row). Initialization of our algorithm relies on the
optic-flow method [55].

(which increase in the region where the motion is badly estimated). This is illustrated in
Figure 8: we observe that €; may be large on the contours of the characters (where the quality
of the motion estimation is typically low) but the PSNR is nevertheless stable across the
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Figure 6. Single-image SR estimates for data sets #2 and #3. SR images and details obtained with nearest
neighbor strategy (first row), Lanczos interpolation (second row), and the learning algorithm of [41] (third row).

reconstructed image sequence. Therefore, as observed from our simulations, a sequential SR
approach is usually better conditioned to deal with videos such as data sets #1 and #3, which
exhibit large displacements and/or occlusions.

Finally, let us notice that there is a positive interaction between the estimation of the
motion fields and the HR images: intuitively, it is clear that a good estimation of the HR
image sequence will improve the quality of the estimated motion fields; similarly, a good
estimation of the superresolved motion fields will enhance the accuracy of the estimated
image sequence. Although this positive interaction is difficult to ensure from a theoretical
side, we have often observed it in practice. We illustrate in Table 3 and Figure 9 the benefit
of refining the motion estimation through our iterative procedure for the synthetic data set
#1, independently of the initial motion estimate. In Table 3, we can notice a slight gain
in terms of MBAE and MEPE in comparison to a direct estimation of the motion from the
LR observations with the methods presented in [55] or [59] (which serve as initializations for
our algorithm; see section 5.1). More interestingly, we note in Figure 9 that the motion field
released by the proposed approach exhibits sharper discontinuities than those output by [55]
or [59].

6. Conclusion. We have presented a new methodology to solve video SR problems, i.e.,
to reconstruct an HR image sequence from LR observations. The HR sequence is entirely
described by a parametric nonlinear sequential model, which connects the different images of
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Figure 7. Multiframe or sequential SR estimates for data sets #2 and #3. SR images and details obtained
with the multiframe algorithms of [A7, 46] (first row) or [35] (second row), and with the proposed sequential
algorithm (third row) in comparison to ground truth (fourth row). Initialization of our algorithm relies on the
optic-flow method [55].

the sequence. It is parametrized by a final condition, a sequence of nonglobal displacement
fields and a sequence of additive noises. In order to compensate for the ill-posedness of the
video SR problem, we considered priors enforcing some forms of sparsity on the unknown
parameters of the system. The joint estimation of the final condition, the displacement, and
the noise sequences was expressed as a constrained minimization problem which, in the general
case, is high dimensional, nondifferentiable and nonconvex. We provided elementary building
blocks to tackle each of these difficulties, and, by gathering them, designed a convergent
optimization algorithm enjoying a complexity (per iteration) linear in the problem dimensions.
Our numerical simulations on several video benchmarks show that the proposed SR method is
competitive with state of the art. In particular, the gain appears to be particularly important
for videos involving complex motions with large amplitudes and occlusions.
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Figure 8. Reconstruction of three superresolved images x¢ (third row), optic-flow fields d; (first row), and
warping errors € (second row) for data set #3 corresponding to t = 3 (left), t =5 (middle), and t =7 (right).
True images (fourth row) and associated PSNR (computed without quantification of the estimates and including
the image borders) are displayed below. Initialization of our algorithm relies on the optic-flow method [55].
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Table 3
Accuracy of low-resolved or superresolved optic-flow estimates in terms of MEPE and MBAE, with respect
to the motion initialization algorithm.

LR estimate SR estimate
MEPE | MBAE | MEPE MBAE
Zach, Pock, and Bischof 2007 [59]. 1.319 24.988 1.302 24.975
Xu, Jia, and Matsushita, 2012 [55]. 1.342 25.592 1.320 25.545

Appendix A. Proof of (4.5)—(4.7). The proof of this specific backward optimal con-
trol solution follows the sketch of the demonstration for the more standard forward problem
presented in [6]. We will focus on the following optimization problem

(A1) argmin 7 (x = Q(e,d, c), €,d,c),
(e,d,c)

where 7 denotes some objective function to be defined below. We recall that, given (e, d, c),
the function Q(e€,d, c) determines a unique vector x = Q(e, d, ¢) satisfying the constraints in
(4.1); see section 4.1. In this appendix, we will use the following shorthand notation for the
constraints in (4.1):

— Fi(xper, €re1,diny), 0<t<T—1,
(A.2) {Xt (X415 €41, deg1)

x7 = Dc

with Fi(X¢s1, €041, der1) = P(Xep1,des1) + €41. We will also alleviate the notation for the
constraint x = Q(e,d, c) by denoting this vector simply by x. Therefore, x should be under-
stood as a function of €,d, c and no longer as an independent variable.

The proof of (4.5)—(4.7) is made of two different parts, in which we study different instances
of optimization problem (A.1). In a first step, we will consider an objective function only
depending on the initial state:'”

(A.3) T(x,€,d,c) = Go(xo).

Then, in a second step, we will come back to the more general problem (4.2), i.e., an opti-
mization problem where the objective function 7 will match the cost function, 7, given in
(4.3):
T—1
T(X7 €, d7 C) é gO(XO) + Z gt(xt7 €, dt) + gT(XT7 €T, dT7 C) é j(xa €, d7 C)’
t=1

First part of the proof. We begin by considering problem (A.1) with the objective
function (A.3). By the chain rule of derivation applied to (A.2) at some point in the set

(A.4) {(x/, e, d,c)

Xllt = E(Xllt—f—lveff-i-lvd:f-i-l)’ 0<t<T-1
xp = D¢ ’

12 As mentioned previously, xo must be understood as a function of €,d, c.
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Figure 9. Optic-flow SR estimates. Motion field estimated from low-resolved images of data set #1 at
initial time. Top: estimates for state-of-the-art algorithms [55] (left) and [59] (right). Middle: estimates with
the proposed SR algorithm initialized with [55] (left) or [59] (right). Bottom: ground truth and associated
colormap.
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we can decompose the gradients into the products

VetT(X/, 6/7 dl? C/) = vetft*—l(xiv 6:57 d:ﬁ) vxt—lﬂ*—2 T vxz‘Fik vXl‘FE)k ongo(xa),
(A5) vdtT(X/7 6/7 dl? C/) = thﬂ*_1(x1/ty 627 dé) vxtflft*—Z e vxz*’ri)< vXl‘FE)k VXOQO(X6)7
V.T (X, €,d,c)= D*Vy, Fr_1 - Vi, Fi Vi, Fo VXOQO(Xf)),

where we recall that Vy, F;_1 denotes the Jacobian matrix of F;_; with respect to function
x; evaluated at (x},€},d}) and Vy, F; ; its transpose. We can rewrite gradients in (A.5) in
order to exhibit their recursive structures. By defining the forward recursion

{ Co = VxoGo(x0),

(A.6) 5
¢t =V, Fi1Gi1, 1<t<T,

we obtain the following rewriting:

VetT(X/7€/7d,7C,) = Vetﬂ*q(xg,e;,d;)@—b 1
(A7) thT(X,’elvdlvcl) = th]:t*—l(xg’eg’d;)Ct—la 1
VcT(le 6/7 dl) C,) = D*CT

<i<T,
<i<T,

Second part of the proof. We now consider problem (A.1) with objective function
(A). By making a change of variables, we want to obtain a rewriting of function (A) with
a structure analogous to (A.3), so that the gradients are given by a recursion of the form
(A.6)—(A.7). In other words, by making some change of variables we intend to rewrite the
sum of functions in (A) as a unique function depending solely on an “initial state.” In order
to do so, let us define variables k;’s recursively as follows:

R = 0,
Kkr_1(x7,€r,dr,¢) = k7 + Gr(x7, €r,dr, ),
Ki—1(X¢, €, ds, ) = K + Gi(x¢, €¢,dy), T —1>t>1.

We then obtain that

!

-1

HO(X767d7C) = gt(xtaetadt) +gT(XT,ET,dT,C),
t=1

and the objective function 7 given in (A) can be rewritten as
(AS) T(x,e,d,c) = Ko(X,G,d,C) —{—go(Xo).

Considering the following change of variables %; = (X! ), we then have that the right-hand side
of (A.8) can be rewritten as a function of X only. In what follows, we will use the following
specific notation to emphasize this fact:

(A.9) Go(%0) = Ko + Go(xo)-
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Moreover, it is easy to see that the functions x;’s satisfy the following backward recursion:

(A.10) ’i‘t :J‘Ef(it+1,€t+1,dt+1), T'-1>t>0,
X7 = fT(ET,dT7C)7

where

= Fi(Xtt1, €41,de41)
Fi(Xeg1, €41, dig1) = ( ' ’
’ ’ K1 + Gep1(Xeq1, €41, dey1) )

) Dc
fT(ET7dT7C) - <gT(DC’ CT,dT7C)> .

We remark that the cost function (A.9), recursion (A.10), and the set

(A.11) {(x ¢, d,c)

5(1/& = f‘t(ié—i—lve:ﬁ—klvd:ﬁ—i—l)? 0<t<T-1
i’/T = ]}T(E’/Tv d/T7 C/) ’

have, respectively, the same structure as (A.3), (A.2), and (A.4). We can then apply the result

obtained previously and get the gradients of 7 using the same reasoning as the one made to

derive (A.6)~(A.7). More specifically, let (X', €, d’,c’) be some point in (A.11), and let ¢, be
an adjoint variable verifying

(A.IQ) { Co= viOQO(ié)a

&t = vitﬁt*—lét—lv 1<t<T,

where the Jacobian matrix of F;_; evaluated at some point (X}, €},d}) is denoted Vg, Fi_1.
Using (A.7), we obtain the following expressions:

thT(f(/, El,d/,c/) = th-ﬁ;t*_1(i:57 6:57 di)&t—l? 1<t<T,
VEtT(ilv 6/7 dl? C,) = vet‘ﬁ.t*—l(i; 6:57 d;)&t—lv 1 St< T7
VT (X, €,d,c) = VeFi(ep,dy, ).

To finalize the proof, we reexpress recursion~(A.12) by developing it with respect to the
two different components of the adjoint variable ¢, = (fjg ), where the ¢,’s have the dimension
of the x;’s and w,’s are scalars. Particularizing the first equation in (A.12) by taking (A.9)
into account, we obtain

o (©)-GED (1)

Moreover, using the definition of F;, the second equation in (A.12) leads to

(A14) <Ct> — (vXtﬂ*—l vtht(X:€7e1/‘,7d1/‘,)> (Ct—l) , 1 S t S T — 1’

Wi 0 1 wt—1

(A.15) <<T> _ (Vfo;_l VXTQT<x’T,e’T,d'T,c'>> <<T_1>,

wr 0 1 wr—1



AN EFFICIENT ALGORITHM FOR VIDEO SUPERRESOLUTION 565

Equations (A.13)—(A.15) imply that w; = 1 V¢; moreover, the recursion in ¢, is equivalent
to (4.7).

Appendix B. The ADMM. The ADMM focuses on the following type of optimization
problems:

(B.1) min _ Gi(21) +Ga(z2) s.t. Az +Bzy =0,

Z1€21,22€E8]

where A € R™™ B € R™"2, G : R — R, Gy : R™ — R are closed, proper, and convex
functions, and =, =5 are nonempty convex sets. We note that the conditions on G; and G
are pretty mild; in particular, G; and Gy are not required to be differentiable and can take on
infinite values.

ADMM is an iterative procedure inspired by the well-known method of multipliers [6]. Tt
searches for a minimizer of (B.1) by sequentially minimizing the corresponding augmented
Lagrangian with respect to each primal variables z; and z,, before updating a dual variable
u € R". Formally, the ADMM recursions take the form

(B.2) A = argminGy (z1) + Sl Az + B2 + a3,
Z1€EZ,

(B.3) zgkﬂ) = argminGo(z9) + gHAzgkﬂ) +Bzs + u(k)H%,
Z2E€E9

(B.4) utkt) — ) 4 Azng) + Bzgkﬂ)

for some p > 0.

ADMM has recently sparked a surge of interest in the signal-processing community for
several reasons. First, the conditions on G; and G, in (B.1) (i.e., closed, proper, and convex) are
mild and (B.1) therefore encompasses a large number of optimization problems as particular
cases. Second, the ADMM recursion (B.2)—(B.4) converges to a solution of (B.1) under
very general conditions; see [7, section 3.2]. Third, although ADMM is known to be slow
to converge to a solution with high accuracy, it has been shown empirically that ADMM
converges to modest accuracy in a few tens of iterations.

Appendix C. Algorithm’s details.

C.1. First building block: Computation of (4.5)—(4.7). In this appendix, we comple-
ment the exposition done in section 4.1 on the fast evaluation of the gradient of cost function
J(€,d,c) given in (4.3), particularized to the model parameters specified in section 5.1. First
of all, we expose the particularization of recursions (4.5)—(4.7) to this setting. It is straight-
forward to see that it results in the following procedure:

(i) Compute sequence {x;}~_, by the backward recursion:

x = Dd/,
!/ P( / d/ )+ /
Xt = F X415, €yl



566 P. HEAS, A. DREMEAU, AND C. HERZET

(ii) Compute sequence {¢;}L_, by the forward recursion:
o = 2Vx H"(H(x)) — yo),
Ct-i—l = vxt+1p*(x1/t+17 :€+1)Ct7 +2vxt+1fH*(H(Xé+1) - Yt—f—l)'

(iii) Compute the gradients:
vetj(e/7d/7c/) = Ct—l + 204161/‘/7
Va,J(€,d,c) = Ei_q + 200 W, GG*d},
VeJ(€,d c') = D*¢r + 2asc/,

where W; € R?"*2n and E; € R?"*" are, respectively, diagonal and block-diagonal matrices
which will be defined in the following. We detail hereafter the elements of the procedure which
have not been fully described yet.

We begin by making some comments on the evaluation of the warping function P(x},d})
and its Jacobian Vy,P(x},d}), which constitute the core of the recursion. We propose to
use the family of bidimensional cubic cardinal splines {¢;}7; for the representation (3.3).
In practice, we compute an equivalent representation based on the family of bidimensional
cubic B-splines functions {¢;}? ;. Indeed, this representation presents some computational
advantages because of the existence of fast B-splines transforms. The relation between cardinal
cubic splines and cubic B-splines functions is given in [52]. This reference also provides details
on the fast cubic B-splines transform by recursive filtering. Let matrix C* = [cq,...,¢c,]* €
R™™ denote the direct B-spline transform of a discrete bidimensional signal, i.e., the transform
computing from a discrete signal x; its representation with spline coefficients C*x;. Rewritten
(3.3) with cubic B-spline functions, we get

(C.1) Ps(x¢,dr) = Z c; x¢ i (X(s) + de(s)),
i€d(x(s)+dt(s))

where ¥(x(s) + d¢(s)) denotes a subset of vector indices corresponding to the neighborhood
of the spatial position x(s) (which differs from the subset V previously defined in (3.3)). To
simplify notations, we denote by Z : R x R?® — R™ the function taking as a first argument
spline coefficients C*x; and as a second argument a motion field d;, and whose sth component
is given by (C.1). Using this notation, (C.1) can be rewritten in the vectorial form

P(Xt, dt) = I(C*Xt, dt)

We denote by VZ(C*x4,d;) the Jacobian of function Z at point (C*x,d;) with respect to
its first argument, i.e., spline coefficients. Since function Z is linear with respect to spline
coefficients, the Jacobian is only dependent on the value of its second argument, i.e., d;.
Therefore, we will adopt the notation VZ(d;) in what follows.

The complexity of evaluating both spline coefficients C*x; and the interpolated function Z,
scales linearly with the image dimension, i.e., O(n), thanks to the representation separability
and to recursive linear filtering [52]. Multiplication with the Jacobian transpose

vxt,]D>’< (Xt+17 dt-i—l) = CVI*(dt+1)
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implies also a linear complexity: first, matrix C is symmetric'® so that it is identical to
the direct B-spline transformation C*, computed by recursive linear filtering; second, the
multiplication of the Jacobian transpose of function Z with vector ¢, is equal to

VI'd)G(s) = D Cli)s(x(i) + du(i)).

ils€d(x(1)+de (7))

Concerning the Jacobian transpose Vi, H*, it is easy to see that this matrix is an up-
sampling operation, inserting zeros, followed by the same low-pass filtering as in H.

We continue by detailing matrices appearing in the last step of the procedure. First, we
note that matrix D* is simply the direct real-valued fast curvelet transform. This trans-
form is, as well as its transpose D, based on fast Fourier transforms, whose complexity
scales in O(nlogn) [33]. Next, the two diagonals of the two-block matrix E; are the two
n-dimensional vectors Js; (Z(C*x;,dy)) for j = 1,2, where s; denotes the jth spatial co-
ordinate. We approach these partial derivatives by second-order centered finite differences.
Then, the diagonal of matrix W; is the vector concatenating twice the weight vector wy, i.e.,
Wi(s,s) = Wy(2s,25) = wy(s) for s =1,...,n.

To finalize the description of this procedure, it remains to give some details on matrix G.
Let the elements of vector G*d; be first-order forward finite difference approximations of the
spatial gradients of the two motion components, which have been rearranged beforehand on the
pixel grid. This gradient approximation becomes exact assuming that components of vector d;
are coeflicients associated with the decomposition of some continuous motion field in a basis
of interpolating and separable scaling functions (see a proof in [31]). Straightforward calculus
then shows that elements of vector GG*d; are second-order finite difference approximations
of the Laplacian of the two motion components, which have been rearranged beforehand on
the pixel grid.

C.2. Second building block: ADMM solver for problems (4.17) and (4.19). In this
appendix, we present an ADMM implementation of the two minimization problems (4.17)
and (4.19) appearing in the procedure described in section 4.3 (which also corresponds to
Algorithm 4 introduced later on in section 5). In the following, iterations of the 2-step
recursion presented in section 4.3 will be indexed by the exponent (), in order to differentiate
them from the iterations related to ADMM, which will be indexed by the exponent (¥,

We begin by the analysis of minimization problem (4.17). This problem can be equivalently
reexpressed as

T T
argmin >~ [Hx) = yoll3 + D (erlél + 113l ) + asllel + 15l

(X7€7C)697(E7C) t=0 t=1
€ = € vt,
* ¢ <
st § Hla ) =da W
c=c,
c—c® =4,

13Matrix C is symmetric in the case of periodic boundary conditions [52].
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where
A x¢ = P(xp41,dey1) + €41, 0t <T -1
Q=< (x,€,0) .
X7 = Dc
~ Here, we have added four new variables to the problem, € = (é1,...,€ér), ¢, be =
(0eys---0ep), and e, which are counterbalanced by the inclusion of four new constraints.

We use the formalism exposed in Appendix B with z; = (x,€,c¢), z2 = (é,é,ge, SC), =2 =9,
and Zy = R x RY x R"" x R? and obtain the following ADMM recursions:

(xFFD | b HD) 1)y = argmin £ (x, €, ¢) gz || H* (e ) - ng) + quH%
(x,€,c)EN =1
(C2) + Elle = e =58 w3,
&l — argming, [|el + £ el — & +ul|3,

e+ = argming &)y + £ [lc®HD — &+ ul”|3,

C.3 ~ ] -
©3 1 58 Zargming el + £IHE - ) = 5 + a3,
5 = argming |51 + %Hc (B+1) e — 5 +ul|3,

a2y ®) (D) )
(k+1) ( ) 1 clht) gl

(C.4) (1:+1) §)+H*( (k+1) _ 0y _ 5kt1).
g’j“ (S el HD) _ ) _ §UD)

where £*) is defined in (4.14). Equations (C.2), (C.3), and (C.4) correspond, respectively,
to expressions (B.2), (B.3), and (B.4) in Appendix B. We comment on the two first steps of
the ADMM algorithm, the last one being trivial. First, as already mentioned, problem (C.2)
has the same structural form as the problem addressed in section 4.1. We thus apply the
methodology described in section 4.1 to solve this problem via a gradient descent algorithm.
The core of this methodology is the computation of the gradient of the cost function with
respect to ¢ and €. The gradient efficient evaluation relies on a backward-forward recursion
possessing the structural form of the first building block constituted by (4.5)—(4.7). Some
details of the implementation on (4.5)—(4.7) are provided in Appendix C.1 for the particular
case of the model parameters given in section 5.1.

We remark that the complexity associated with the evaluation of the gradient scales as
O(nT + q). Second, the optimization problems specified in (C.3) all have simple analytical
solutions based on soft-thresholding operators (4.16). We immediately remark that the two
first updates in (C.3) are identical to the ADMM steps (4.12) used to treat the convex case
in section 4.2. Moreover, the solutions to the last two problems in (C.3) are given by

56T () = softy (b7 (e — ef?) + (i)

(C.5) 5D (3) = soft (c(k+1)(z-) — () + ugk)( ))

Vi,
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where h; is the ith column of H and “soft” denotes the soft-threshloding operator defined in
(4.16).

We continue with the analysis of minimization problem (4.19). We first remark that
we can apply the methodology described in section 4.1 to compute the gradient thB(d(Z))
required to build the quadratic approximation (4.20). Once this quadratic approximation has
been obtained, the task now is to solve minimization problem (4.19). We can notice that this
problem does unfortunately not possess an explicit solution. To circumvent this issue, we use
an ADMM strategy, as detailed below. Problem (4.19) is reexpressed as

T
argmin  B(d,d¥) + ay Z R(d,)
d,(&l,...,&T) t=1

(C.6) st. G*d;=d, Vi

Here, we have added the new variables d,’s to the problem which are counterbalanced by
the inclusion of new constraints. We use the formalism exposed in Appendix B with 21 =
(dy,...,dr), z9 = (di,...,d7), 1 = R?"T and Z5 = R"" and obtain the following ADMM

recursions:

T
(7 d*) = argmin B(d.d0) + 530 1G"d, - 4 +ugIE
d =1
(C.8) agk—i-l) = arg min R(at) 4 %”G*dyﬁ—l) B at n ug?H%,
d; 2
(C.9) u((ff'l) _ ug‘i) + GrdE Y — gk,

Equations (C.7), (C.8), and (C.9) correspond, respectively, to expressions (B.2), (B.3), and
(B.4) in Appendix B.

We comment now on the resolution of (C.7) and (C.8). First, the unconstrained differen-
tiable problem (C.7) can be easily solved via a gradient descent algorithm. The gradient of
the cost function in (C.7) with respect to d; can be expressed as

(C.10) Va,BAdD) + a®(d, — d) + pG(G*d, — d + ul),

As mentioned previously, thb’(d(@) is simple to evaluate via the recursions described in
section 4.1; moreover, the multiplications by G and G* appearing in the last term of (C.10)
can be done efficiently for the particular choice of G considered in this paper (see section C.1
for details on this topic).

Second, the solution of problem (C.8) is closed form (see, e.g., [38, section 6.5.2]). It is
given for any j € §; with 1 <14¢ < n by

o) 0 if 7 < ow(i)/pa,
akH(j): T; — CioW(1
t ( 2 ( )/p2) (g;dik‘f'l)

Ti

+ ugz) (7)) otherwise,
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where the scalar 7; is given by

T = Z( *d(k—l—l +ug?(j))2,

JES;
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