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ABSTRACT

In this paper we address the problem of sparse representation (SR)
within a Bayesian framework. We assume that the observations are
generated from a Bernoulli-Gaussian process and consider the corre-
sponding Bayesian inference problem. Tractable solutions are then
proposed based on the “mean-field” approximation and the varia-
tional Bayes EM algorithm. The resulting SR algorithms are shown
to have a tractable complexity and very good performance over a
wide range of sparsity levels. In particular, they significantly im-
prove the critical sparsity upon state-of-the-art SR algorithms.

Index Terms— Sparse representations, Bayesian framework,
variational methods, mean-field approximation.

1. INTRODUCTION

Sparse representations aim at describing a signal as the combination
of a small number of atoms chosen from an overcomplete dictionary.
More precisely, let y € RY be an observed signal and D € R *M
a rank- N matrix whose columns are normed to 1. Then, a standard
formulation of the sparse representation problem writes

x* = argmin ||x[lo subjectto |y —Dx[3 <e, (1)

where || - ||, denotes the I,,-norm'.

Finding the exact solution of (1) is an intractable problem.
Therefore, numerous suboptimal (but tractable) algorithms have
been devised in the literature to address the SR problem. We can
roughly divide the existing algorithms into 3 main families: i) the
greedy algorithms which build up the sparse vector x by making a
succession of locally-optimal decisions. This family includes MP
[1], OMP [2], gradient pursuit (GP) [3] , CoSamp [4] and subspace
pursuit (SP) [5] algorithms; ii) the algorithms based on a problem
relaxation, like basis pursuit (BP) [6], FOCUSS [7] or SLO [8]; these
algorithms approximate (1) by relaxed problems that can be solved
efficiently by standard optimization procedures; iii) the Bayesian
algorithms which express the sparse representation problem as the
solution of a Bayesian inference problem and apply statistical tools
to solve it. Examples of such algorithms include the relevant vec-
tor machine (RVM) algorithm [9], the sum-product [10] and the
expectation-maximization [11] SR algorithms.

In this paper we place the SR problem into a Bayesian frame-
work: the observed vector y is modeled as the output of a Bernoulli-
Gaussian (BG) process and the sparse vector x is searched as the so-
lution of the corresponding Bayesian inference problem. Tractable
solutions of this problem are computed by considering mean-field
variational approximations of p(x|y). The implementation of the
MF approximations is made by means of the variational Bayes EM
(VB-EM) algorithm. The resulting SR algorithms are shown to have

!||x||o denotes the number of nonzero elements in x.

a tractable complexity and, as far as our simulation setup is con-
cerned, lead to a significant improvement of the performance upon
state-of-the-art SR algorithms.

2. BG FORMULATION OF THE SR PROBLEM

In this section, we present the BG probabilistic model which will be
used in section 3 to derive SR algorithms.

We assume that the observed vector y has a Gaussian distribu-
tion with mean Dx and covariance UﬁI N, Le.,

p(y|x) = N(Dx, 07 Ly), )

where Iy is the NV x N identity matrix. We suppose moreover that
x obeys the following probabilistic model:

p(X) = ZP(X, S)’ 3)
= H > p(@ilsip(s:), )
where
p(zi|si) = N(0,0%(si)), (5)
p(si) = Ber(pi), (6)

and Ber(p;) denotes a Bernoulli distribution with parameter p;. The
probability p(x) can be interpreted as follows: each component z; is
drawn, independently, from a mixture of two zero-mean Gaussians
whose variance depends on the realization of a Bernoulli variable s;.

The BG model (3)-(6) is actually well-suited to modeling situ-
ations where x is sparse. Indeed, if 02(s; = 0) < o(s; = 1)
and p; < 1V 4, most of the components x; will be drawn from a
Gaussian with a small variance. Hence, only a small fraction of the
x;’s will have an amplitude significantly larger than the others. This
is clearly in accordance with the sparse representation paradigm.

Model (3)-(6) (or variants thereof) has already been used in
many Bayesian algorithms available in the literature, see e.g.,
[10, 11, 12]. In this paper, we present a new approach, based
on mean-field variational approximations, to solve SR problems.

3. SR ALGORITHMS BASED ON MEAN-FIELD
VARIATIONAL APPROXIMATIONS

Based on probabilistic model (3)-(6), sparse solutions for x can be
found as the maximum or the mean of posterior distribution p(x|y):

b3

= arg max logp(x|y), (7

>

= [ xp(x|y)dx, )



where

p(xly) = p(x,sly). ©)

The complexity associated to problem (7)-(8) is intractable. In
particular, the marginalization in (9) requires a number of operations
which scales exponentially with the dimension of s.

Dealing with complex marginalizations is a common issue in
statistics. One possible way to solve this kind of problem is to re-
sort to variational approximations of p(x, s|y) (see e.g., [13] for a
survey). The simplest (and probably the most common) variational
approximation is the so-called “mean-field” (MF) approximation,
which forces the independence between (some of) the variables. In
this paper, we propose to apply the mean-field approximation to the
SR problem.

We recall the basics of mean-field approximations in section 3.1.
Then, in sections 3.2 to 3.4 we derive SR algorithms based on dif-
ferent mean-field approximations of p(x, s|y).

3.1. Mean-field approximation: Basics

Let 6 denote a vector of random variables (e.g., = [x”s”]7) and
let p(0]y) be its a posteriori probability. The mean-field approx-
imation of p(@|y) approximates p(@]y) by a probability having a
“suitable” factorization. More precisely, let ¢(0) be a probability
distribution such that’:

q(8) £ q(61) q(62), (10

where 6, and 6, are such that 7 = [#T,67] and J q(6:)do; = 1.
Then, the mean-field approximation of p(@|y), say ¢*(@), can be
expressed as

q"(9) =argmin KL(q(8); p(0]y)), (1)
subject to (10),

where KL (q(60); p(6]y)) is the Kullback-Leibler distance between
q(0) and p(8ly), i.e.,

KL(a0)sp0ly)) = [ a(®)1og 205d6.  (12)

The solution of optimization problem (11) can be iteratively com-
puted via the following recursion:

"t (6,) x exp {<logp(y, 9)>q<"><02>} ’ (1
g (62) o exp {<1ogp(y7 9)>q<"+“<91>} ’ (9

where o< denotes equality up to a normalization factor and

(0gp(y. Do) 2 [ a(0)logp(y. 000 (19

The algorithm defined by (13)-(14) is usually referred to as “varia-
tional Bayes EM (VB-EM) algorithm” in the literature [14]. This al-
gorithm is ensured to converge to a saddle point or a (local or global)
maximum of problem (11).

2For the sake of conciseness, we limit here our discussion to the case
where ¢(@) is constrained to have a factorization as the product of two fac-
tors. The extension to the general case is straightforward.

Note that the MF approximation automatically provides an ap-
proximation of the marginals of p(@|y) with respect to 6;’s. Indeed,
we have for i # j:

p(8ily) = /pw\y)dej,

~ /q*w)dej - /q*wi)q*(oj)dej,
:q*(Bi)7 (16)

where the last equality follows from the fact that q(6;)’s are con-
strained to be probability distributions (i.e., IGi q(0;)d0; = 1 Yi).
Hence, the VB-EM algorithm can also be regarded as an itera-
tive procedure which computes approximations of the marginals of
p(6ly).

3.2. MF approximation p(x, s|y) ~ ¢(x)q(s)

In this section, we particularize the VB-EM equations (13)-(14) to
the case where the MF approximation of p(x, s|y) is constrained to
have the following structure:

q(x,s) = q(x)q(s). (17)
Let 5 be a diagonal matrix whose ith diagonal element is defined

as (3s),; £ 0°(s;). Then, taking (2)-(6) into account, we obtain’
after some mathematical manipulations:

0(s) x (VAT xp { = (<50 o | pls), (19

< ﬁ exp {—% b ois,

q(x) = N(m,T), (19)
where
DD ~ -t
= ( PrRS (Bs 1>q<s>) ; (20)
m= ULZFDTy. Q1

As mentioned in section 3.1, g(x) can also be regarded as an ap-
proximation of p(x|y). Coming back to MAP problem (7), we then
have

% = arg max log p(x|y),

~ arg max log q(x) = m.

Moreover, since ¢(x) is Gaussian, m is also the solution of (8). After
convergence of the VB-EM algorithm, m is therefore an approxima-
tion of the sparse solutions (7)-(8).

In the sequel, we will refer to the procedure defined in (18)-(21)
as variational Bayes sparse representation (VBSR1) algorithm. The
complexity of VBSR1 is dominated by the matrix inversion in (20).
This operation can be performed with a complexity scaling as N by
using the Matrix Inversion Lemma [15]. This order of complexity is
similar to the one of algorithms based on problem relaxation such as
BP or FOCUSS.

3When clear from the context, we will drop the iteration indices ™) in the
rest of the paper.



It is quite interesting to compare VBSR1 with CoSaMP/SP al-
gorithms [4]-[5]. At each iteration, CoSaMP and SP select a subset
of atoms and compute the least-square (LS) estimate of x assuming
these atoms are active. The subset of active atoms is selected on the
basis of the amplitude of the scalar products between the atoms and
the current residual. VBSR1 performs similar operations but intro-
duces “softness” in both the selection of the active atoms and the
computation of the estimate of x: i) instead of making hard deci-
sions about the atom activity, VBSR1 rather computes a probability
of activity for each atom, see (18); ii) VBSR1 computes the linear
minimum mean square estimate (LMMSE) of x assuming that x is
zero-mean with covariance matrix (Xs)q(s), see (21). It can be seen
that the LMMSE and the LS estimates are equal when all the diag-
onal elements of (¥s)4(s) are either equal to 0 or co. This situation
occurs when ¢(s) is a Dirac function, i.e., when hard decisions are
made about the atom activity.

VBSR1 also shares some similarities with RVM since both al-
gorithms compute a new Gaussian density on x at each iteration.
However, the two algorithms make very different hypotheses about
the prior model on x. In RVM, p(z;) is assumed to be Gaussian
with unknown variance; a new estimate of the variance is then re-
computed at each iteration. On the other hand, VBSR1 is based on a
BG model on p(z;). At each iteration, a new approximation ¢(s) is
computed. Hence, as shown in section 4, RVM and VBSRI lead to
very different performance in practice.

3.3. MF Approximation p(x, s|y) ~ [, q(z:, s:)

In this section, we consider the MF approximation of p(x, s|y) when
q(x,s) is constrained to have the following factorization®:

M
a(x,s) = [ [ a(@i, s0). (22)
i=1

Particularizing (18)-(19) to the BG model (2)-(6), we obtain after
some manipulations:

q(wi, si) = q(xilsi)q(si) Vi, (23)
where g(x;|s;) and ¢(s;) are defined as follows:
q(zi|si) = N(m(si), T'(s:)), 24)
o%(s;) rid;dfr;
q(sz) X O—% - O—Z(SZ) exp { 20_% 0_% + O'Q(S»L) } (Sz)7
(25)
and
02(51-)0,%
I'(si) = 2(5:) £ 02 (26)
0'2(87,’) T
m(Si) = mdi ri, 27
r, = y — Z<xj>‘1(mj7sj)dj' (28)
J#i

Using (22), an approximation of p(x|y) can be computed as follows

p(xly) = [TD_ atws, s0), (29)

? Si

“In [16], Attias applied the mean-field approximation (22) to a BG model
in the context of blind source separation. However, no assumptions about the
sparsity of the sources were made in this paper.

and the solution of (8) can then be approximated as

i (T = »_m(si)a(s:) Vi (30)

In the sequel, we will refer to the procedure defined by (22)-(27)
as VBSR2. This algorithm can actually be regarded as a soft ver-
sion of MP: at each iteration, the estimate of the sparse vector x is
updated by a weighted version of the projection of the current resid-
ual, see (27)-(30). Similarly to MP, the order in which probabilities
q(x;, s;) are updated plays therefore an important role in the perfor-
mance of the algorithm. At each iteration, we choose to update the
factor with the highest probability of activity ¢(s;).

The computational complexity of VBSR2 is dominated by the
evaluation of (27) and is therefore of order M per iteration. This
complexity is similar to the complexity of MP or GP.

3.4. Combination of mean-field approximations

The MF approximation implies to break the statistical dependencies
between some of the variables. For example, the independence be-
tween x and s (resp. all the couples (x;, s;)) is forced in (17) (resp.
(22)). Although these independence assumptions simplify the com-
putation of ¢(x, s), they also lead to the loss of some statistical in-
formation. In this section we propose a heuristic algorithm which
intends to reduce this loss of information by taking benefit (up to a
point) from both decompositions (17) and (22).

The algorithm is defined as a combination of VBSR1 and
VBSR?2 updates:

1. ¢ (x) = N(m,T) where m and T" are defined in (20)-(21).

2. ¢"™(s) = [1,q(si) where q(s;) are computed from (25)-
(27) by USIng (25 g(x,,57) = (23) 40 () 0 7).

The first step thus relies on assumption (17), the second one on as-
sumption (22). This algorithm will be referred to as VBSR3 in the
sequel. The complexity of VBSR3 is dominated by the matrix inver-
sion (20) and scales therefore with N3, This complexity is similar to
the one of VBSR1. It is important to mention that the VBSR3 update
equations do not define a VB-EM algorithm and the convergence of
VBSR3 is therefore not theoretically ensured. However, we will see
in the next section that VBSR3 leads to good empirical results.

4. SIMULATIONS

In this section, we study the performance of the proposed SR al-
gorithms by extensive computer simulations. We follow the same
methodology as in [5] to assess the performance of the SR algo-
rithms: we calculate the empirical frequency of correct reconstruc-
tion versus the number of non-zero coefficients in x, say K. We
assume that a vector has been correctly reconstructed when the am-
plitude of the error reconstruction on each non-zero coefficient is
lower than 10™%.

Fig. 1 illustrates the performance achieved by VBSR1, VBSR2
and VBSR3. The performance of other standard SR algorithms (MP,
OMP, BP, SP and RVM) are also reported for the sake of compar-
ison. We use the following parameters for the generation of these
curves: N = 128, M = 256, 02 = 107°. The elements of the
dictionary are i.i.d realizations of a zero-mean Gaussian distribution
with variance N ~'. The positions of the non-zero coefficients are
drawn uniformly at random. The amplitude of the active (resp. in-
active) coefficients are generated from a zero-mean Gaussian with
variance o (s; = 1) = 10 (resp. o°(s; = 0) = 10~®). For each
point of simulation, we run 200 trials.
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Fig. 1. Frequency of exact reconstruction versus number of non-
zero coefficients; N = 128, M = 256, 02 = 107°, 0%(s; = 0) =
1078, 0%(s; = 1) = 10 Vi.

MP and OMP are run until the /2-norm of the residual drops
below v/ No2. The probabilities of activity used by the VBSR algo-
rithms are set to p(s; = 1) = K/M Vi. We noticed that the perfor-
mance of VBSR1 and VBSR3 can be greatly improved by progres-
sively decreasing the variance on the inactive coefficients. We used
the following strategy:

(0%(si =0)"™ =080%(s; = 1)a" + 0%(s: =0) Vi, (31)
where n is the iteration number and v < 1.

A good figure of merit of SR algorithms is their critical spar-
sity, i.e., the maximum number of nonzero coefficients for which the
original sparse vector x can be reconstructed with frequency one.
As far as our simulation setup is concerned, we see from Fig. 1
that both VBSR1 and VBSR3 clearly outperform the other SR algo-
rithms: VBSR1 and VBSR3 start failing for K > 55 whereas SP
(resp. BP) has its critical sparsity located around K = 45 (resp.
K = 35). Note that, if D is a rank-/N matrix, it is well-known
that the optimal (but intractable) estimator which computes the ex-
act solution of (1) can recover any sparse vector if K < N/2 = 64.
VBSRI1 and VBSR3 are getting very close to this limit since they
can recover roughly 70% of the active coefficients when K = 64.

On the other hand, the performance of VBSR2 is quite poor and
similar to the one of MP. This is due to the fact that (22) is a poor
approximation of the true a posteriori probability p(x|y).

5. CONCLUSION

In this paper, we consider the sparse representation problem within
a Bernoulli-Gaussian Bayesian framework. We propose several
tractable solutions to the Bayesian inference problem by resorting
to mean-field variational approximations and the VB-EM algorithm.
The resulting SR algorithms are shown to have very good perfor-
mance over a wide range of sparsity levels. In particular, they
significantly improve the critical sparsity upon state-of-the-art SR
algorithms. The complexity of our best algorithm evolves as N3,
which may be too large for some large-scale applications. However,
strong connections are made between the proposed algorithms and

low-complexity SR algorithms such as CoSaMP/SP. This observa-
tion paves the way for the design of low-complexity versions of
VBSR algorithms and is part of ongoing work.
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