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ABSTRACT

The paper introduces a probabilistic model for the analysis of line
spectra — defined here as a set of frequencies of spectral peaks with
significant energy. This model is detailed in a general polyphonic
audio framework and assumes that, for a time-frame of signal, the
observations have been generated by a mixture of notes composed
by partial and noise components. Observations corresponding to
partial frequencies can provide some information on the musical
instrument that generated them. In the case of piano music, the
fundamental frequency and the inharmonicity coefficient are intro-
duced as parameters for each note, and can be estimated from the
line spectra parameters by means of an Expectation-Maximization
algorithm. This technique is finally applied for the unsupervised es-
timation of the tuning and inharmonicity along the whole compass
of a piano, from the recording of a musical piece.

Index Terms— probabilistic model, EM algorithm, polyphonic
piano music

1. INTRODUCTION

Most algorithms dedicated to audio applications (Fp-estimation,
transcription, ...) consider the whole range of audible frequencies
to perform their analysis, while besides attack transients, the en-
ergy of music signals is often contained into only a few frequency
components, also called partials. Thus, in a time-frame of music
signal only a few frequency-bins carry information relevant for the
analysis. By reducing the set of observations, ie. by keeping only
the few most significant frequency components, it can be assumed
that most signal analysis tasks may still be performed. For a given
frame of signal, this reduced set of observations is here called a
line spectrum, this appellation being usually defined for the discrete
spectrum of electromagnetic radiations of a chemical element.

Several studies have considered dealing with these line spectra
to perform analysis. Among them, [1] proposes to compute tonal
descriptors from the frequencies of local maxima extracted from
polyphonic audio short-time spectra. In [2] a probabilistic model
for multiple- F estimation from sets of maxima of the Short-Time
Fourier Transform is introduced. It is based on a Gaussian mix-
ture model having means constrained by a F parameter and solved
as a maximum likelihood problem by means of heuristics and grid
search. A similar constrained mixture model is proposed in [3] to
model speech spectra (along the whole frequency range) and solved
using an Expectation-Maximization (EM) algorithm.
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The model presented in this paper is inspired by these two last
references [2, 3]. The key difference is that we here focus on piano
tones, which have the well-known property of inharmonicity, that in
turn influences tuning. This slight frequency stretching of partials
should allow, up to a certain point, disambiguation of harmonically-
related notes. Reversely, from the set of partials frequencies, it
should be possible to estimate the inharmonicity and tuning pa-
rameters of the piano. The model is first introduced in a general
audio framework by considering that the frequencies corresponding
to local maxima of a spectrum have been generated by a mixture of
notes, each note being composed of partials (Gaussian mixture) and
noise components. In order to be applied to piano music analysis,
the Fp and inharmonicity coefficient of the notes are introduced as
constraints on the means of the Gaussians and a maximum a poste-
riori EM algorithm is derived to perform the estimation. It is finally
applied to the unsupervised estimation of the inharmonicity and tun-
ing curves along the whole compass of a piano, from isolated note
recordings, and then from a polyphonic piece.

2. MODEL AND PROBLEM FORMULATION

2.1. Observations

In time-frequency representations of music signals, the information
contained in two consecutive frames is often highly redundant. This
suggests that in order to retrieve the tuning of a given instrument
from a whole piece of solo music, a few independent frames lo-
calized after note onset instants should contain all the information
that is necessary for processing. These time-frames are indexed by
t€{1..T} in the following. In order to extract significant peaks
(i.e. peaks containing energy) from the magnitude spectra a noise
level estimation based on median filtering (c¢f. appendix of [4]) is
first performed. Above this noise level, local maxima (defined as
having a greater magnitude than K left and right frequency bins)
are extracted. The frequency of each maximum picked in a frame
t is denoted by v, ¢ € {1...I;}. The set of observations for each
frame is then denoted by y: (a vector of length I;), and for the
whole piece of music by Y = {y:, t€{1...T'}}. In the following
of this document, the variables denoted by lower case, bold lower
case and upper case letters will respectively correspond to scalars,
vectors and sets of vectors.

2.2. Probabilistic Model

If a note of music, indexed by r € {1...R}, is present in a time-
frame, most of the extracted local maxima should correspond to
partials related by a particular structure (harmonic or inharmonic
for instance). These partial frequencies correspond to the set of
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parameters of the proposed model. It is denoted by 6, and in a gen-
eral context (no information about the harmonicity or inharmonicity
of the sounds) can be expressed by 0 = {fn,|Vne{1l...N,.},r€
{1...R}}, where n is the rank of the partial and N, the maximal
rank considered for the note 7.

In order to link the observations to the set of parameter 6, the
following hidden random variables are introduced:
e ¢ €{1...R}, corresponding to the note that could have generated
the observations y.
o Ci = [crir](i,r)efl...1,} x{1...r} gathering Bernoulli variables
specifying the nature of the observation y:;, for each note 7.
An observation is considered belonging to the partial of a note
r if ¢t = 1, or to noise (non-sinusoidal component or partial
corresponding to another note) if ¢t = 0.
o P = [ptz-r](m)e{l_‘_lt}X{lmR} corresponding to the rank of the
partial n of the note r that could have generated the observation y;
provided that ¢ =1.

Based on these definitions, the probability that an observation
y¢i has been generated by a note r can be expressed as:
p(yulae=r;0) = p(yuilcir=0,q.=7) - p(crir=0|q:=r)

+ Z P(Yei|prir=n, ctir=1, qr=r; 0) (D

P(prir=nlctir=1, qt=r) - p(crir=1|g=r).

It is chosen that the observations that are related to the partial n
of a note r should be located around the frequencies f,, accord-
ing to a Gaussian distribution of mean f,, and variance o2 (fixed
parameter):

N(forso2), ()
1/N.,. 3)

P(Yei|prir=n, crir=1, qr=1;0)
p(prir=nlctir=1,q=r) =
On the other hand, observations that are related to noise are chosen

to be uniformly distributed along the frequency axis (with maximal
frequency F):

p(ytilerir=0,ge=r) = 1/F. )

Then, the probability to obtain a noise or partial observation
knowing the note r is chosen so that:
<if Iy > N,

plewir|lgr=r) = { (It — N) /1

N, /I,

if ctir =0,
if Ctir = 1.

5
It>Ny )
This should approximately correspond to the proportion of observa-
tions associated to noise and partial classes for each note.
-if Iy < Ni:

plenrlai=r) = {

I <N,

1—¢ 1.f cn.r : 0, ©)
€ if cyir =1,

with € < 1 (set to 1077 in the presented results). This latter expres-
sion means that for a given note r at a frame ¢, every observation
should be mainly considered as noise if [V, (its number of partials),
is greater than the number of observations. This situation may occur
for instance in a frame in which a single note from the high treble
range is played. In this case, only a few local maxima are extracted
and lowest notes, composed of much more partials, should not be
considered as present.

Finally, with no prior information it is chosen

plg=r)=1/R. %)
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2.3. Estimation problem

In order to estimate the parameters of interest 6, it is proposed to
solve the following maximum a posteriori estimation problem:

(0" {Ci}e,{P'}e) = argmax Y logp(y:,Ch, Pi;6), (8)
0,{Ct}e.{Pe}e

where

p(y:,Ce, Pi;0) = > p(ye, Co, Pryge = 136). €

Solving problem (8) corresponds to the estimation of 6, joint to a
clustering of each observation into noise or partial classes for each
note. Note that the sum over ¢ of Eq. (8) arises from the time-frame
independence assumption (justified in Sec. 2.1).

2.4. Application to piano music

The model presented in Sec. 2.2 is general since no particular struc-
ture has been set on the partial frequencies. In the case of piano
music, the tones are inharmonic and the partials frequencies related
to transverse vibrations of the (stiff) strings can be modeled as:

frr =nFor\/1+ Brn2, n e {1..N,}.

Fo, corresponds to the fundamental frequency (theoretical value,
that does not appear as one peak in the spectrum) and B, to the
inharmonicity coefficient. These parameters vary along the com-
pass and are dependent on the piano type [5]. Thus, for appli-
cations to piano music, the set of parameters can be rewritten as
0 = {For, Br,Vr € {1, R}}.

10)

3. OPTIMIZATION

Problem (8) has usually no closed-form solution but can be solved
in an iterative way by means of an Expectation-Maximization (EM)
algorithm [6]. The auxiliary function at iteration (k1) is given by

Q0,{Ci}e, {P:}:|0® {C Y, {PM}e) = (1)

Z Z Wrt - Z log p(yti, Ctir, Prir, qe=1; 0)
t r 7

where,

wre = plae=rlye, {CP e, (PP Y156M)),

is computed at the E-step knowing the values of the parameters at
iteration (k). At the M-step, 6, {C' }+, { P:}+ are estimated by max-
imizing Eq. (11). Note that the sum over 7 in Eq. (11) is obtained
under the assumption that in each frame the y:; are independent.

12)

3.1. Expectation
According to Eq. (12) and model Eq. (1)-(7)

Iy
wre o [ [ pyss, e=r, ¢}, pink; 0°)
=1
x plai=r)- [ pweilge=r,cii)) - plefi)lgr=r)
i/ c(k):()

tir

13)

T pwealae=r, i), pis), 6% - p(oii)leis), ae=r) - plegi)lae=r),

i/ C(k>:1

tir

normalized so that Zf’zl wrt = 1 for each frame ¢.



2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics

3.2. Maximization

The M-step is performed by a sequential maximization of Eq. (11):

e First, estimate V ¢,4 and g; = r the variables ¢y and pip.
As mentioned in Sec. 2.3, this corresponds to a classification
step, where each observation is associated, for each note, to noise
class (ctir = 0) or partial class with a given rank (¢t =1 and
pitr € {1...N,}). This step is equivalent to a maximization of
log p(yti, Ctir, Prir | e =7; 0) Which, according to Eq. (1)-(7), can
be expressed as:

(coaspiy) = (14
—log F + log p(ctir=0|q:=7),

argmax —(yi— 2

oty | ~oger)= — log Nyv/270, + log plcrir=1]gi=r).

o Then, the estimation of 6 is equivalent to (Vr € {1...R})

(FS | Bk :argmaxZwrt Z [logp(cii_e:l):uqt:r)
For,Br i/ch;hu):l

2\ 2
— (a2t B/ 14 B o) 1)

For Fy,, canceling the partial derivative of Eq. (15) leads to the
following update rule:

(k1) (k1)
(BH) _ 2y wrt Zi/c,(:’;jl):l Yei  Prir L+ Br pigy

or 2 2
(k1) (kt1)
Zt Wrt Zi/cilﬁ—l):l Pyir = - (1 + Br Pyiy )

(16)
For B, no closed-form solution can be obtained from the partial
derivative of Eq. (15). The maximization is thus performed by
means of an algorithm based on the Nelder-Mead simplex method.

3.3. Practical considerations

The cost-function (¢f. maximization Eq. (8)) is non-convex with
respect to (B, Fo,) parameters. In order to prevent the algorithm
from converging towards a local maximum, a special care must be
taken to the initialization.

First, the initialization of (B, Fo,) uses a mean model of inhar-
monicity and tuning [5] based on piano string design and tuning rule
invariants. This initialization can be seen, depicted as gray lines, on
Fig. 1(b) and 1(c) of Sec. 4. Moreover, to avoid situations where the
algorithm optimizes the parameters of a note in order to fit the data
corresponding to another note (eg. increasing Fp of one semi-tone),
(Br, For) are prevented from being updated over limit curves. For
B, these are depicted as gray dashed-line in Fig. 1(b). The limits
curves for Fp are set to +/— 40 cents of the initialization.

Since the deviation of the partial frequencies is increasing with
the rank of partial (c¢f. Eq. (10)), the highest the rank of the partial,
the less precise its initialization. Then, it is proposed to initialize
the algorithm with a few partials for each note (about 10 in the bass
range to 3 in the treble range) and to add a new partial every 10 iter-
ations (number determined empirically) by initializing its frequency
with the current (B,., Fy,) estimates.

4. APPLICATIONS TO PIANO TUNING ESTIMATION

It is proposed in this section to apply the algorithm to the estimation
of (Br, For) parameters from isolated note recordings covering the
whole compass of pianos and polyphonic pieces, in an unsupervised
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way (i.e. without knowing which notes are played). The recordings
are taken from SptkBGCI grand piano synthesizer (using high qual-
ity samples) of MAPS database'.

The observation set is built according to the description given
in Sec. 2.1. The time-frames are extracted after note onset instants
and their length is set to 500 ms in order to have a sufficient spectral
resolution. The FFT is computed on 2'° bins and the maxima are
extracted by setting K =20. Note that for the presented results,
the knowledge of the note onset instants is taken from the ground
truth (MIDI aligned files). For a complete blind approach, an onset
detection algorithm should be first run. This should not significantly
affect the results that are presented since onset detection algorithms
usually perform well on percussive tones. Parameter o, is set to 2
Hz for all the notes and /V,- maximal value is set to 40.

4.1. Estimation from isolated notes

The ability of the model/algorithm to provide correct estimates of
(Br, For) on the whole piano compass is investigated here. The
set of observations is composed of 88 frames (jointly processed),
one for each note of the piano (from A0 to C8, with MIDI index in
[21,108]). R is set equal to 88 in order to consider all notes. The
results are presented on Fig. 1. Subplot (a) depicts the matrix wy+ in
linear and decimal log. scale (x and y axis respectively correspond
to the frame index ¢ and note 7 in MIDI index). The diagonal struc-
ture can be observed up to frame t=65: the algorithm detected the
good note in each frame, up to note C'6 (MIDI index 85). Above,
the detection is not correct and leads to bad estimates of B, (sub-
plot (b)) and Fpu, (subplot (c)). For instance, above MIDI note 97,
(B, Fo,) parameters stayed fixed to their initial values. These dif-
ficulties in detecting and estimating the parameters for these notes
in the high treble range are common for piano analysis algorithms
[5]: in this range, notes are composed of 3 coupled strings that pro-
duce partials that do not fit well into the inharmonicity model Eq.
(10). The consistency of the presented results may be qualitatively
evaluated by refering to the curves of (B, Fp) obtained on the same
piano by a supervised method, as depicted in Fig. 5 from [5].

4.2. Estimation from musical pieces

Finally, the algorithm is applied to an excerpt of polyphonic music
(25 s of MAPS_MUS-muss_3_SptkBGCl file) containing notes in the
range Df1- F6 (MIDI 27-90) from which 46 frames are extracted.
66 notes, from A0 to C7 (MIDI 21-96), are considered in the model.
This corresponds to a reduction of one octave in the high treble
range where the notes, rarely used in a musical context, cannot be
properly processed, as seen in Sec. 4.1.

The proposed application is here the learning of the inharmonic-
ity and tuning curves along the whole compass of a piano from a
generic polyphonic piano recording. Since the 88 notes are never
present in a single recording, we estimate (B, Fy) for the notes
present in the recording and, from the most reliable estimates, apply
an interpolation based on physics/tuning considerations [5]. In or-
der to perform this complex task in an unsupervised way, an heuris-
tic is added to the optimization and a post-processing is performed.
At each iteration of the optimization, a threshold is applied to wy¢
in order to limit the degree of polyphony to 10 notes for each frame
t. Once the optimization is performed, the most reliable notes are
kept according to two criteria. First, a threshold is applied to the
matrix wy+ so that elements having values lower than 1073 are set

Thttp://www.tsi.telecom-paristech.fr/aao/en/category/database/
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Figure 1: Analysis on the whole compass from isolated note record-
ings. a) wy in linear (left) and log,, (right) scale. b) B in log
scale and c) F{ as deviation from Equal Temperament (ET) in cents,
along the whole compass. (B, Fo) estimates are depicted as black
‘+” markers and their initialization as gray lines. The limits for the
estimation of B are depicted as gray dashed-lines.

to zero. Then, notes that are never activated along the whole set of
frames are rejected. Second, notes having B estimates stuck to the
limits (cf. gray dashed lines in Fig. 1) are rejected.

Subplot 2(a) depicts the result of the note selection (notes hav-
ing been detected at least once) for the considered piece of music.
A frame-wise evaluation (with MIDI aligned) returned a precision
of 86.4 % and a recall of 11.6 %, all notes detected up to MIDI in-
dex 73 corresponding to true positives, and above to false positives,
all occuring in a single frame. It can be seen in subplots (b) and (c)
that most of (B, Fu) estimates (‘+” markers) corresponding to notes
actually presents are consistent with those obtained from the single
note estimation (gray lines). Above MIDI index 73, detected notes
correspond to false positive and logically lead to bad estimates of
(B, Fo). Finally, the piano tuning model [5] is applied to interpo-
late (B, Fo) curves along the whole compass (black dashed lines,
indexed by WC) giving a qualitative agreement with the reference
measurements. Note that bad estimates of notes above MIDI in-
dex 73 do not disturb the whole compass model estimation. Further
work will address the quantitative evaluation of (B, Fy) estimation
from synthetic signals, and real piano recordings (from which the
reference has to be extracted manually [5]).

5. CONCLUSION

A probabilistic line spectrum model and its optimization algorithm
have been presented in this paper. To the best of our knowledge,
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Figure 2: Piano tuning estimation along the whole compass from a
piece of music. a) Note detected by the algorithm and ground truth.
b) B in log scale. ¢) Fy as deviation from ET in cents. (B, Fy) es-
timates are depicted as black ‘+’ markers and compared to isolated
note estimates (gray lines, obtained in Fig. 1). The interpolated
curves (indexed by WC) are depicted as black dashed lines.

this is the only unsupervised estimation of piano inharmonicity and
tuning estimation on the whole compass, from a generic extract of
polyphonic piano music. Interestingly, for this task a perfect tran-
scription of the music does not seem necessary: only a few reliable
notes may be sufficient. However, an extension of this model to pi-
ano transcription could form a natural extension, but would require
a more complex model taking account both temporal dependencies
between frames, and spectral envelopes.
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